您的当前位置:首页高三数学考试分析总结

高三数学考试分析总结

2021-01-27 来源:飒榕旅游知识分享网

  等式的性质:

  ①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

  不等式基本性质有:

  (1)a>bb

  (2)a>b,b>ca>c(传递性)

  (3)a>ba+c>b+c(c∈R)

  (4)c>0时,a>bac>bc

  cbac

  运算性质有:

  (1)a>b,c>da+c>b+d。

  (2)a>b>0,c>d>0ac>bd。

  (3)a>b>0an>bn(n∈N,n>1)。

  (4)a>b>0>(n∈N,n>1)。

  应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

  ②关于不等式的性质的考察,主要有以下三类问题:

  (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

  (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

  (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

  高中数学集合复习知识点

  任一A,B,记做AB

  AB,BA ,A=B

  AB={|A|,且|B|}

  AB={|A|,或|B|}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命题

  原命题若p则q

  逆命题若q则p

  否命题若p则q

  逆否命题若q,则p

  (2)AB,A是B成立的充分条件

  BA,A是B成立的必要条件

  AB,A是B成立的充要条件

  1.集合元素具有①确定性;②互异性;③无序性

  2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法

  (3)集合的运算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性质

  n元集合的字集数:2n

  真子集数:2n-1;

  非空真子集数:2n-2

  高中数学集合知识点归纳

  1、集合的概念

  集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。

  集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

  2、元素与集合的关系元素与集合的关系有属于和不属于两种:

  元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。

  3、集合中元素的特性

  (1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。

  (3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

  4、集合的分类

  集合科根据他含有的元素个数的多少分为两类:

  有限集:含有有限个元素的集合。如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。

  无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。

  特别的,我们把不含有任何元素的集合叫做空集,记错F,如{|R|+1=0}。

  5、特定的集合的表示

  为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

  (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。

  (2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。

  (3)全体整数的集合通常简称为整数集Z。

  (4)全体有理数的集合通常简称为有理数集,记做Q。

  (5)全体实数的集合通常简称为实数集,记做R。

因篇幅问题不能全部显示,请点此查看更多更全内容