36、连续数求和的速算
苦干个连续整数求和的问题,可以分为“连续自然数求和”、“连续奇数求和”与“连续偶数求和”三类。
【连续自然数求和】几个连续的自然数相加,可以把它们的首项和末项相加,把所得的结果除以2以后,再乘以项数,得到的便是这几个连续自然数的和。
例如,13+14+15+16+17+18+19+20+21+22
=(13+22)÷2×10
=17.5×10
=175
如果加数的个数(项数)是奇数(单数),也可以直接用排列在正中间的数(中间项)乘以项数,去求它们的和。例如
=15×9 (中间项)
=135
1
小学数学奥数解题技巧
【连续奇数求和】连续奇数的求和,也可以用上面介绍的“连续自然数求和的速算”方法去速算。例如
3+5+7+ 9+11+13+ 15+17+19
=(3+19)÷2×9
=11×9
=99
=11(中间项)×9(项数)
=99
如果是从1开始的几个连续奇数求和,则可以用这些奇数的个数自乘,便得到这几个连续奇数的和。例如
1+3+5+ 7+9+11=6×6=36(奇数个数是6)
1+3+5+7+9+11+13+15+17+19+21
=11×11
2
小学数学奥数解题技巧
=121。(奇数个数是11)
【连续偶数求和】 连续偶数的求和,同样可以用“连续自然数求和的速算”方法速算。例如
8+10+12+14+16+18+20+22+24
=(8+24)÷2×9
=144
如果连续偶数是从2开始的,即求从2开始的连续偶数之和,则可以用这些偶数的个数乘以个数加1之和,就得到这几个连续偶数的和。例如
2+4+6+8+10=5×(5+1)(偶数个数是5)
=30
2+4+6+8+10+12+14+16+18+20+22+24+26
=13×(13+1)(偶数个数是13)
=182
3
因篇幅问题不能全部显示,请点此查看更多更全内容