教学目标
1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.
(2)了解数列的各种表示方法,理解通项公式是数列第 项 与项数
的关系式,能根
据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
3.通过由 求
的过程,培养学生严谨的科学态度及良好的思维习惯.
教学建议
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用
来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜
想该数列的下一项或下几项的值,以便寻求项与项数的关系.
(5)对每个数列都有求和问题,所以在本节课应补充数列前 项和的概念,用 的问题是重点问题,可先提出一个具体问题让学生分析 究其一般规律,并给出严格的推理证明(强调
与
表示
的关系,再由特殊到一般,研
的表达式是分段的);之后再到特殊问题的解
决,举例时要兼顾结果可合并及不可合并的情况.
(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.
教学设计示例
数列的概念
教学目标
1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.
2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.
3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.
教学重点,难点
教学重点是数列的定义的归纳与认识;教学难点是数列与函数的联系与区别.
教学用具:电脑,课件(媒体资料),投影仪,幻灯片
教学方法:讲授法为主
教学过程
一.揭示课题
今天开始我们研究一个新课题.
先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数
(板书) 象这样排好队的数就是我们的研究对象——数列.
(板书)第三章 数列
(一)数列的概念
二.讲解新课
要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:
(幻灯片) ①
自然数排成一列数:
②
3个1排成一列:
③
无数个1排成一列:
④
的不足近似值,分别近似到 排列起来:
⑤
正整数 的倒数排成一列数:
⑥
函数 当 依次取 时得到一列数:
⑦
函数 当 依次取 时得到一列数:
⑧
请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.
(板书)1.数列的定义:按一定次序排成的一列数叫做数列.
为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述八个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.
由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,„„,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.
(板书)2.数列与函数的关系
数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集
,或是正整数集
的有限子集
.
于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列.
遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.
(板书)3.数列的表示法
数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用 一项,用
表示第一项,„„,用
表示第 项,依次写出成为
表示第
(板书)(1)列举法
.(如幻灯片上的例子)简记为 .
一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法.
(板书)(2)图示法
启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项
为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为
例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在
轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项
数由小到大变化而变化的趋势.
有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即 通项公式.
,这个函数式叫做数列的
(板书)(3)通项公式法
如数列 的通项公式为 ;
的通项公式为 ;
的通项公式为 ;
数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.
例如,数列 的通项公式 ,则 .
值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.
除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.
(板书)(4)递推公式法
如前面所举的钢管的例子,第
,再给定
层钢管数 与第 层钢管数 的关系是
,便可依次求出各项.再如数列
,这个数列就是
.
中,
像这样,如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系用一个公式来表示,这个公式叫做这个数列的递推公式.递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可.
可由学生举例,以检验学生是否理解.
三.小结
1.数列的概念
2.数列的四种表示
四.作业 略
五.板书设计
数列 (一)数列的概念 涉及的数列及表示 1.数列的定义 2.数列与函数的关系 3.数列的表示法 (1)列举法 (2)图示法 (3)通项公式法 (4)递推公式法
探究活动
将边长为 形的个数.
厘米的正方形分成 个边长为1厘米的正方形,数出其中所有正方
解:当 共有正方形
时,共有正方形
个;当
个;当 时,共有正方形 个;当 时,个;当
厘米的
时,共有正方形
个;归纳猜想边长为
个.
时,共有正方形
正方形中的正方形共有
因篇幅问题不能全部显示,请点此查看更多更全内容