您的当前位置:首页(完整版)机械能守恒定律练习题及其答案

(完整版)机械能守恒定律练习题及其答案

2021-01-01 来源:飒榕旅游知识分享网
机械能守恒定律专题练习

姓名: 第一类问题:双物体系统的机械能守恒问题

例1. (2007·江苏南京)如图所示,A物体用板托着,位于离地面

处,轻,

(例2)

专 项 练 习 题

质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A物体质量

例2.

连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大

at a高度为多少?

time a如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线

nd

(例1)

All things in)

t过程中不会碰到定滑轮,问:B物体在上升过程中离地的最大高度为多大?(取

irB物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升

分数:

第二类问题:单一物体的机械能守恒问题例3.

(2005年北京卷)

是竖直平面内的四分之一圆弧形轨道,在下端B点与

水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径为R,小球的质量为m,不计各处摩擦,求:

(1)小球运动到B点时的动能;

(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。

例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作

四分之一光滑圆弧轨道,小球从与O点等高的圆弧最高点滚下后水平抛出,试求:

(2)要使这一距离最大,R应满足何条件?最大距离为多少?

a第三类问题:机械能守恒与圆周运动的综合问题

t a tim(1)小球落地点到O点的水平距离;

e and All things in their be(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;

ing are go 例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l,最大偏

角为,小球运动到最低位置时的速度是多大?

例6. (2005·沙市)如图所示,用一根长为L的细绳,一端固定在天花板上的O

点,另一端系一小球A,在O点的正下方钉一钉子B,当质量为m的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B,小球开始以B为圆心做圆周运动,

直半圆环,最后小球落在C点,求A、C间的距离(

ll thin在水平地面上向左做加速度

gs半圆环与粗糙的水平地面相切于圆环的端点A,一质量m=0.10kg的小球,以初速度

的匀减速直线运动,运动

后,冲上竖

e and A(例7)

in例7. (2005年广东)如图所示,半径

their恰能过B点正上方C,求OB的距离。

being的光滑半圆环轨道处于竖直平面内,

ar(例5)

e g(例6)

aABC,其半径

t a例8.

tim(2006年全国II)如图所示,一固定在竖直平面内的光滑的半圆形轨道

,轨道在C处与水平地面相切,在C处放一小物块,给它一水平

oo(例8)

d for 向左的初速度,结果它沿CBA运动,通过A点,最后落在水平地面上的D点,

求C、D间的距离s。取重力加速度

1、如图所示的装置中,木块M与地面间无摩擦,子弹m以一定的速度沿水平方向射入木块并留在其中,然后,将弹簧压缩至最短,现将木块、子弹、弹簧作为研究对象,从

A. 机械能守恒 C. 机械能不守恒

能E随高度h变化的图象C,物体的动能( )

ll thin随高度h变化的图象A,物体的重力势能

gs2、一个物体以一定的初速度竖直上抛,不计空气阻力,那么如图中,表示物体的动能

随速度v变化的图象B,物体的机械随速度v的变化图象D,可能正确的是

3、某同学身高1.8m,在运动会上他参加跳高比赛,起跳后身体横着越过了1.8m高的

t a横杆,据此可估算出他起跳时竖直向上的速度大约为( ),g取

B.

C.

D.

tim

e and A in thD. 弹簧压缩至最短时,动能全部转化成热能

eirB. 产生的热能等于子弹动能的减少量

being ar。

子弹开始射入木块到弹簧压缩至最短的过程中系统( )

a A.

e good f自主测试题

or so

4、如图所示,将一根长

的金属链条拉直放在倾角

的光滑斜面上,链条下端

的圆形轨道的半径为R,要使小球沿光滑圆轨道恰能通过最高点,物体应从离轨道最低点多高的地方开始滑下?

gs in their be5、小钢球质量为m,沿光滑的轨道由静止滑下,轨道形状如图所示,与光滑轨道相接

ing ar(5题)

e g

与斜面间无摩擦,设当A沿斜面下滑s距离后,细线突然断了,求物块B上升的最大距离H。

time a为m。开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升。物体A

nd定滑轮,一柔软的细线跨过定滑轮,两边分别与A、B连接,A的质量为4m,B的质量

at a

A6、如图所示,一固定的楔形木块,其斜面的倾角

ll thin,另一边与地面垂直,顶上有一

oo (6题)

f其速度大小为______。(g取)

r与斜面下边缘相齐,由静止释放后,当链条刚好全部脱离斜面时,

解得

代入数据有

A着地后,B做竖直上抛运动,竖直上抛能上升的高度为

例2:解析:释放后,系统加速运动,当A着地时B恰好达水平直径的左端,此时A、B速度均为

(1)方法一:用由

求解。

in their代入数据有

B物体上升过程中离地面的最大高度为

being ar,这一过程

系统机械能守恒,此后B物体竖直上抛,求出最高点后即可得出结果,下面用机械能守恒定律的三种表达式来求解。

得,

B以竖直上抛,则上抛最大高度

e and A有

ll things,

故B上升的最大高度为

a对A、B系统,△

t a(2)方法二:用△

tim求解。

e g例1:解析:在A下降B上升的过程中,A、B组成的系统机械能守恒,由机械能守恒定律得

专项练习题:

答 案

△,

由△有,

得。

(3)方法三:用△求解。

对A物体:△对B物体:△由△

则。

同理可得。

(2)由机械能守恒

如图所示,即图中角。

由几何关系知,速度方向与竖直方向的夹角为(3)由机械能守恒得

tim小球速度大小为

e a。

nd,速度方向沿圆弧在该点的切线方向向下,

t a a All thin有

gs。

in例3:解析:(1)小球从A滑到B的过程中,只有重力做功,机械能守恒,则

their being are goo同理可得。

d for so由牛顿第二定律得由①②式解得

小球运动到C点,在竖直方向上受力平衡,。

例4:解析:(1)小球在圆弧上滑下过程中受重力和轨道弹力作用,但轨道弹力不做功,即只有重力做功,机械

能守恒,可求得小球平抛的初速度根据机械能守恒定律得

设水平距离为s,根据平抛运动规律可得

(2)因H为定值,则当时,即时,s最大,最大水平距离

所以这个过程中只有重力做功,机械能守恒。

小球在最高点作为初状态,如果把最低点的重力势能定为0,在最高点的重力势能就是而动能为零,即

ll thin例5:解析:小球摆动过程中受重力和细线的拉力作用,细线的拉力与小球的运动方向垂直,不做功,

小球在最低点作为末状态,势能

nd A,而动能可以表示为:

运动过程中只有重力做功,所以机械能守恒,即

tim把各个状态下动能、势能的表达式代入,得

t a a由此解出

e a。

gs in。

their being are good for som例6:解析:小球在整个运动过程中,仅受到重力和绳的拉力,而拉力对它不做功,所以在整个运动过程中机械能

守恒,小球从释放位置运动到C点的过程中机械能守恒,以过C的水平面为零势能面,设小球在C点的速度为

则有:

所以

小球在竖直平面内以B为圆心做圆周运动,而且恰能经过C点,即在C点仅由重力提供向心力,所以:

由以上各式可得:,则

例7:解析:匀减速运动过程中,有

恰好做圆周运动时物体在最高点B满足:

,得

假设物体能到达圆环的最高点B,由机械能守恒有

小球从B点做平抛运动,有

tim,

解得

a例8:解析:设小物块的质量为m,过A处时的速度为v,由A到D经历的时间为t,有

t ae a因为,所以小球能通过最高点B。

nd解得

A,

ll thin。

gs in their being are g而

ood fr 。①

。②

。③

由①②③式并代入数据得

以D选项正确。)

3.

. B(设该同学的重心在其身体的中点上,把他看成质点,他上升的最大高度是

in their律可得,所以A选项正确,由公式

be2.

A、B、C、D(以一定初速度竖直上抛的物体,不计空气阻力,机械能守恒,因此C选项正确,由机械能守恒定

ing ar服摩擦力做的功,机械能减少,机械能不守恒,子弹减少的动能一部分转化为热能,另一部分转化成M的动能和弹簧的势能,然后,将弹簧压缩至最短这一过程中只有系统内弹力做功,机械能守恒,但全过程机械能不守恒,从子弹射向木块直至弹簧被压缩至最短,动能一部分转化成热能,另一部分转化成势能。应选B。)

可知B选项正确,又因为

e g1. B (子弹以一定的速度沿水平方向射向木块并留在其中这一过程中,摩擦力对M做的功(M位移小)小于子弹克

oo自主测试题:

d f,所

,根据机械能守恒,

,即

gs,所以最接近。)

4.取水平面为参考平面,

根据机械能守恒定律有解得

All thin,

到达圆轨道的最高点时机械能为

at a tim5. 刚释放时,小球的机械能为

e and。

or som根据机械能守恒定律:

要使小球刚好沿圆轨道通过最高点,应有

解得

,。

则由机械能守恒定律可得:

即为。①

细线断开瞬间,物块B上升的速度为,此后B做竖直上抛运动,设上升的距离为h,则有物体B上升的最大高度

由①②③式,可解出H=1.2m

。②。③

at a time and All things in their being are g6. 设物体A沿斜面向下滑动s时速度为v,

ood for so

因篇幅问题不能全部显示,请点此查看更多更全内容