您的当前位置:首页2020中考数学专题8——最值问题之将军饮马 -含答案

2020中考数学专题8——最值问题之将军饮马 -含答案

2023-01-14 来源:飒榕旅游知识分享网


2020 中考专题 8——最值问题之将军饮马

班级

【模型解析】

姓名

.

总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。 特点:①动点在直线上;②起点,终点固定; 方法:作定点关于动点所在直线的对称点。

【例题分析】

例 1.如图,在平面直角坐标系中,Rt△OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为(3, 3 ), 点 C 的坐标为( ,0),点 P 为斜边 OB 上的一动点,则 PA+PC 的最小值为 2

1

例 2.如图,在五边形 ABCDE 中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2, 在 BC、DE 上分别找一点 M、N.

(1)当△AMN 的周长最小时,∠AMN+∠ANM= ; (2)求△AMN 的周长最小值.

例 3.如图,正方形 ABCD 的边长为 4,点 E 在边 BC 上且 CE=1,长为 2 的线段 MN 在 AC 上运动.

(1) 求四边形 BMNE 周长最小值; (2) 当四边形 BMNE 的周长最小时,则 tan∠MBC 的值为 .

1

第 1 页 共 12 页

[南瓜讲数学]系列之中考专题

例 4.在平面直角坐标系中,已知点 A(一 2,0),点 B(0,4),点 E 在 OB 上,且∠OAE=∠OBA.如

图,将△AEO 沿 x 轴向右平移得到△AE′O′,连接 A'B、BE'.当 AB+BE'取得最小值时,求点 E'的坐标.

例 5.如图,已知正比例函数 y=kx(k>0)的图像与 x 轴相交所成的锐角为 70°,定点 A 的坐标为(0, 4),P 为 y 轴上的一个动点,M、N 为函数 y=kx(k>0)的图像上的两个动点,则 AM+MP+PN 的最小值为

【巩固训练】

1. 如图 1 所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对

角线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为 .

图 1 图 2 图 3 图 4 2. 如图 2,在菱形 ABCD 中,对角线 AC=6,BD=8,点 E、F、P 分别是边 AB、BC、AC 上的动点,PE+PF 的最小值是 . 3. 如图 3,在边长为 2 的等边△ABC 中,D 为 BC 的中点,E 是 AC 边上一点,则 BE+DE 的最小值为 .

4. 如图 4,钝角三角形 ABC 的面积为 9,最长边 AB=6,BD 平分∠ABC,点 M、N 分别是 BD、BC 上的动点,则 CM+MN 的最小值为 . 5. 如图 5,在△ABC 中,AM 平分∠BAC,点 D、E 分别为 AM、AB 上的动点, (1)若 AC=4,S△ABC=6,则 BD+DE 的最小值为

(2) 若∠BAC=30°,AB=8,则 BD+DE 的最小值为 (3) 若 AB=17,BC=10,CA=21,则 BD+DE 的最小值为

2

第 2 页 共 12 页

图 5

[南瓜讲数学]系列之中考专题

6. 如图 6,在△ABC 中,AB=BC=4,S△ABC=43 ,点 P、Q、K 分别为线段 AB、BC、AC 上任意

一点,则 PK+QK 的最小值为 .

图 6 图 7 图 8 图 9 7. 如图 7,AB 是⊙O 的直径,AB=8,点 M 在⊙O 上,∠MAB=20°,N 是弧 MB 的中点,P 是直径 AB 上的一动点,则 PM+PN 的最小值为 .

8. 如图 8,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M、N 分别是

AD 和 AB 上的动点,则 BM+MN 的最小值是 .

9. 如图 9,圆柱形玻璃杯高为 12cm、底面周长为 18cm,在杯内离杯底 4cm 的点 C 处有一滴蜂蜜, 此时一只蚂蚁正好在杯外壁,离杯上沿 4cm 与蜂蜜相对的点 A 处,则蚂蚁到达蜂蜜的最短距离为

cm.

10. 如图 10,菱形 OABC 中,点 A 在 x 轴上,顶点 C 的坐标为(1, 3 ),动点 D、E 分别在射线

OC、OB 上,则 CE+DE+DB 的最小值是

图 10 图 11 图 12

3 x

图 13

11. 如图 11,点 A(a,1)、B(-1,b)都在双曲线 y=- (x<0)上,点 P、Q 分别是 x 轴、y 轴上

的动点,当四边形 PABQ 的周长取最小值时,PQ 所在直线的解析式是 . 12. 如图 12,点 P 是∠AOB 内任意一点,OP=5cm,点 M 和点 N 分别是射线 OA 和射线 OB 上的动点,△PMN 周长的最小值是 5cm,则∠AOB 的度数是 . 13. 如图 13,∠AOB=30°,点 M、N 分别在边 OA、OB 上,且 OM=1,ON=3,点 P、Q 分别在边 OB、OA 上,则 MP+PQ+QN 的最小值是 .

14. 如图 14,在 Rt△ABC 中,∠ACB=90°,点 D 是 AB 边的中点,过 D 作 DE⊥BC 于点 E. (1)点 P 是边 BC 上的一个动点,在线段 BC 上找一点 P,使得 AP+PD 最小,在下图中画出点 P; (2)在(1)的条件下,连接 CD 交 AP 于点 Q,求 AQ 与 PQ 的数量关系;

图 14

第 3

[南瓜讲数学]系列之中考专题

15. 在矩形 ABCD 中,AB=6,BC=8,G 为边 AD 的中点.

(1) 如图 1,若 E 为 AB 上的一个动点,当△CGE 的周长最小时,求 AE 的长.

(2) 如图 2,若 E、F 为边 AB 上的两个动点,且 EF=4,当四边形 CGEF 的周长最小时,求 AF

的长.

16. 如图,抛物线 y   x 2x  4 交y 轴于点B,点A 为x 轴上的一点,OA=2,过点A 作直线MN  AB

1

2

2 交抛物线与 M、N 两点. (1) 求直线 AB 的解析式;

(2) 将线段 AB 沿 y 轴负方向平移 t 个单位长度,得到线段 A1B1 ,求 MA1  MB1 取最小值时实数 t 的值.

第 4

[南瓜讲数学]系列之中考专题

2020 中考专题 8——最值问题之将军饮马 参考答案

例 1.解:作 A 关于 OB 的对称点 D,连接 CD 交 OB 于 P,连接 AP,过 D 作 DN⊥OA 于 N,

则此时 PA+PC 的值最小,

∵DP=PA,∴PA+PC=PD+PC=CD,∵B(3, ∵tan∠AOB=

AB

3

OA

3 1 2

3 ),∴AB= 3 ,OA=3,

= ,∴∠AOB=30°,∴OB=2AB=2 3 ,

1 2

3 2

3 2

由三角形面积公式得: ×OA×AB= ×OB×AM,∴AM= ,∴AD=2× =3, ∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°, ∵DN⊥OA,∴∠NDA=30°,∴AN= AD= ,由勾股定理得: DN= 3 ,

2

2

2

1 1 3

Rt△DNC 中,由勾股定理得:DC= 31 , ∵C( ,0),∴CN=3﹣ ﹣ =1,在

2

1

3

3

即 PA+PC 的最小值是

2

31

2 2

2

例 2.解:作 A 关于 BC 和 ED 的对称点 A′,A″,连接 A′A″,交 BC 于 M,交 ED 于 N,则 A′A″即为

△AMN 的周长最小值.

⑴作 EA 延长线的垂线,垂足为 H,∠BAE=120°,∴∠AA′A″+∠AA″A′=60°, ∠AA′A″=∠A′AM,∠AA″A′=∠EAN,∴∠CAN=120°-∠AA′A″-∠AA″A′=60°, 也就是说∠AMN+∠ANM=180°-60°=120°.

⑵过点 A′作 EA 延长线的垂线,垂足为 H,

∵AB=BC=1,AE=DE=2,∴AA′=2BA=2,AA″=2AE=4, 则 Rt△A′HA 中,∵∠EAB=120°,∴∠HAA′=60°,

∵A′H⊥HA,∴∠AA″H=30°,∴AH= AA′=1,∴A′H= 3 ,A″H=1+4=5,

2 1

∴A′A″=2 7 ,

例 3.解:作 EF∥AC 且 EF= 2 ,连结 DF 交 AC 于 M,在 AC 上截取 MN= 2 ,延长 DF 交 BC 于 P,

作 FQ⊥BC 于 Q,作出点 E 关于 AC 的对称点 E′,则 CE′=CE=1,将 MN 平移至 E′F′处,

第 5

[南瓜讲数学]系列之中考专题

则四边形 MNE′F′为平行四边形,

当 BM+EN=BM+FM=BF′时,四边形 BMNE 的周长最小, 由∠FEQ=∠ACB=45°,可求得 FQ=EQ=1,

∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC, ∴

PQ 2 8 1 PQ = ,∴ PQ = ,解得:PQ= ,∴PC= ,

PQ  QE  EC PQ  2 4 CD 3 3

2 3

由对称性可求得 tan∠MBC=tan∠PDC= .

例 4.【提示】

将△AEO 向右平移转化为△AEO 不动,点 B 向左平移,则点 B 移动的轨迹为一平行于 x 轴的直线,所以作点 E 关于该直线的对称点 E1,连接 AE1,与该直线交点 F 即为最小时点 B 的位置,求出 BF长度即可求出点 E 向右平移的距离.

例 5.解:如图所示,直线 OC、y 轴关于直线 y=kx 对称,直线 OD、直线 y=kx 关于 y 轴对称,点

A′是点 A 关于直线 y=kx 的对称点.

作 A′E⊥OD 垂足为 E,交 y 轴于点 P,交直线 y=kx 于 M,作 PN⊥直线 y=kx 垂足为 N, ∵PN=PE,AM=A′M,∴AM+PM+PN=A′M+PM+PE=A′E 最小(垂线段最短), 在 RT△A′EO 中,∵∠A′EO=90°,OA′=4,∠A′OE=3∠AOM=60°, ∴OE= OA′=2,A′E= 42  22 =2 3 .

2 1

∴AM+MP+PN 的最小值为 2 3 .

6

[南瓜讲数学]系列之中考专题

【巩固训练】答案

1. 解:连接 BD,

∵点 B 与 D 关于 AC 对称,∴PD=PB,∴PD+PE=PB+PE=BE 最小.

3 , ∵正方形 ABCD 的面积为 12,∴AB=2

又∵△ABE 是等边三角形,∴BE=AB=2 3 ,故所求最小值为 2 3 .

2. 解:∵四边形 ABCD 是菱形,对角线 AC=6,BD=8,∴AB=5,

作 E 关于 AC 的对称点 E′,作 E′F⊥BC 于 F 交 AC 于 P,连接 PE,则 E′F 即为 PE+PF 的最 小值,∵ ACBD=ADE′F,∴E′F= ,∴PE+PF 的最小值为

2

5

1

24

24 5

.

3. 解:作 B 关于 AC 的对称点 B′,连接 BB′、B′D,交 AC 于 E,此时 BE+ED=B′E+ED=B′D,

根据两点之间线段最短可知 B′D 就是 BE+ED 的最小值,

∵B、B′关于 AC 的对称,∴AC、BB′互相垂直平分,∴四边形 ABCB′是平行四边形,

∵三角形 ABC 是边长为 2,D 为 BC 的中点,∴AD⊥BC,AD= 3 ,BD=CD=1,BB′=2AD=2 3 , 作 B′G⊥BC 的延长线于 G,∴B′G=AD= 3 , 在 Rt△B′BG 中,BG=3,∴DG=BG﹣BD=3﹣1=2,在 Rt△B′DG 中,B′D=7 . 故 BE+ED 的最小值为 7 .

4. 解:过点 C 作 CE⊥AB 于点 E,交 BD 于点 M,过点 M 作 MN⊥BC 于 N,

∵BD 平分∠ABC,ME⊥AB 于点 E,MN⊥BC 于 N,∴MN=ME, ∴CE=CM+ME=CM+MN 是最小值.

∵三角形 ABC 的面积为 9,AB =6,∴ ×6CE=9,∴CE=3.

2 1

即 CM+MN 的最小值为 3.

第 7

[南瓜讲数学]系列之中考专题

5. 提示:作点 E 关于 AM 的对称点 E′,BH⊥AC 于 H,易知 BD+DE 的最小值即为 BH 的长.

答案:(1)3;(2)4;(3)8.

6. 解:如图,过 A 作 AH⊥BC 交 CB 的延长线于 H,

∵AB=CB=4,S△ABC=4 3 ,∴AH=2 3 , ∴cos∠HAB=

AH

2 3 4

= ,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,

2

3

AB

∵∠BAC=∠C=30°,

作点 P 关于直线 AC 的对称点 P′,过 P′作 P′Q⊥BC 于 Q 交 AC 于 K, 则 P′Q 的长度=PK+QK 的最小值,

∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°, ∴四边形 AP′QH 是矩形,∴P′Q=AH=2 3 , 即 PK+QK 的最小值为 2 3 .

7. 解:作点 N 关于 AB 的对称点 N′,连接 OM、ON、ON′、MN′,

则 MN′与 AB 的交点即为 PM+PN 的最小时的点,PM+PN 的最小值=MN′, ∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°, ∵N 是弧 MB 的中点,∴∠BON= ∠MOB= ×40°=20°,

2

2

1

1

由对称性,∠N′OB=∠BON=20°,∴∠MON′=∠MOB+∠N′OB=40°+20°=60°, ∴△MON′是等边三角形,∴MN′=OM=OB= AB=  8 =4,

2

2

1

1

∴PM+PN 的最小值为 4,

第 8

[南瓜讲数学]系列之中考专题

8. 解:如图,作 BH⊥AC,垂足为 H,交 AD 于 M′点,过 M′点作 M′N′⊥AB,垂足为 N′,则 BM′+

M′N′为所求的最小值.

∵AD 是∠BAC 的平分线,∴M′H=M′N′,∴BH 是点 B 到直线 AC 的最短距离, ∵AB=4,∠BAC=45°,∴BH=ABsin45°=4×

2 2

=2 2 .

∵BM+MN 的最小值是 BM′+M′N′=BM′+M′H=BH=2 2 .

9. 解:沿过 A 的圆柱的高剪开,得出矩形 EFGH,

过 C 作 CQ⊥EF 于 Q,作 A 关于 EH 的对称点 A′,连接 A′C 交 EH 于 P,连接 AP, 则 AP+PC 就是蚂蚁到达蜂蜜的最短距离,

∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C, ∵CQ= ×18 cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,

2 1

在 Rt△A′QC 中,由勾股定理得:A′C=15cm,故答案为:15.

10. 解:连接 AC,作 B 关于直线 OC 的对称点 E′,连接 AE′,交 OC 于 D,交 OB 于 E,此时 CE+

DE+BD 的值最小,

∵四边形 OCBA 是菱形,∴AC⊥OB,AO=OC,即 A 和 C 关于 OB 对称, ∴CE=AE,∴DE+CE=DE+AE=AD,

∵B 和 E′关于 OC 对称,∴DE′=DB,∴CE+DE+DB=AD+DE′=AE′,

过 C 作 CN⊥OA 于 N,∵C(1, 3 ),∴ON=1,CN= 3 ,

由勾股定理得:OC=2,即 AB=BC=OA=OC=2,∴∠CON=60°,∴∠CBA=∠COA=60°, ∵四边形 COAB 是菱形,∴BC∥OA,∴∠DCB=∠COA=60°,

∵B 和 E′关于 OC 对称,∴∠BFC=90°,∴∠E′BC=90°﹣60°=30°, ∴∠E′BA=60°+30°=90°,CF= BC=1,由勾股定理得:BF= 3 =E′F,

2 1

在 Rt△EBA 中,由勾股定理得:AE′=4,即 CE+DE+DB 的最小值是 4.

第 9

[南瓜讲数学]系列之中考专题

11.解:把点 A(a,1)、B(﹣1,b)代入 y=﹣ (x<0)得 a=﹣3,b=3,则 A(﹣3,1)、B (﹣1,

x

3

3),作 A 点关于 x 轴的对称点 C,B 点关于 y 轴的对称点 D,所以 C 点为(﹣3,﹣1),D 点为(1, 3),连结 CD 分别交 x 轴、y 轴于 P 点、Q 点,此时四边形 PABQ 的周长最小,

3k  b  1 k  1

设直线 CD 的解析式为 y=kx+b,则,解得,

 k  b  3 b  2





所以直线 CD 的解析式为 y=x+2.

12.解:分别作点 P 关于 OA、OB 的对称点 C、D,连接 CD,分别交 OA、OB 于点 M、N,

连接 OC、OD、PM、PN、MN,如图所示:

∵点 P 关于 OA 的对称点为 D,关于 OB 的对称点为 C,∴PM=DM,OP=OD,∠DOA=∠ POA;

∵点 P 关于 OB 的对称点为 C,∴PN=CN,OP=OC,∠COB=∠POB, ∴OC=OP=OD,∠AOB=

1

∠COD,

2

∵△PMN 周长的最小值是 5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即 CD=5=OP, ∴OC=OD=CD,即△OCD 是等边三角形,∴∠COD=60°,∴∠AOB=30°;

13 解:作 M 关于 OB 的对称点 M′,作 N 关于 OA 的对称点 N′,

连接 M′N′,即为 MP+PQ+QN 的最小值.

根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°, ∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°, ∴在 Rt△M′ON′中,M′N′= 10 .故答案为 10 .

第 10

[南瓜讲数学]系列之中考专题

14. 解:(1)作点 A 关于 BC 的对称点 A′,连 DA′交 BC 于点 P.

(2)由(1)可证得 PA 垂直平分 CD,∴AQ= 3 CQ=3PQ

15. 解:(1)∵E 为 AB 上的一个动点,

∴作 G 关于 AB 的对称点 M,连接 CM 交 AB 于 E,那么 E 满足使△CGE 的周长最小; ∵在矩形 ABCD 中,AB=6,BC=8,G 为边 AD 的中点,∴AG=AM=4,MD=12,

而 AE∥CD,∴△AEM∽△DCM,∴AE:CD=MA:MD,∴AE=

CD  MA MD

=2;

(2)∵E 为 AB 上的一个动点,

∴如图,作 G 关于 AB 的对称点 M,在 CD 上截取 CH=4,然后连接 HM 交 AB 于 E,接着在 EB 上截取 EF=4,那么 E、F 两点即可满足使四边形 CGEF 的周长最小. ∵在矩形 ABCD 中,AB=6,BC=8,G 为边 AD 的中点, ∴AG=AM=4,MD=12,而 CH=4,∴DH=2,

而 AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE=

HD  MA2

= , MD 3

2 14

∴AF =4+ = .

3

3

11

[南瓜讲数学]系列之中考专题

16.解:(1)依题意,易得 B(0,4),A(2,0),则 AB 解析式: y  2x  4 (2)∵AB⊥MN

1

∴直线 MN: y  x  1

2

1 

y   x2  2x  4 

2 与抛物线联立可得:  y 1

x  1 2

解得:M(-2,-2) 将 AB 向负方向平移 t 个单位后,A1(2,-t),B1(0,4-t)则 A1 关于直线 x=-2 的对称点 A2 为(-6,-t)

当 A2、M、B1 三点共线时, MA1  MB1 取最小值

14∴ t  3

第 12

因篇幅问题不能全部显示,请点此查看更多更全内容