考点一:时刻与时间间隔的关系
时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如:
第4s末、4s时、第5s初„„均为时刻;4s内、第4s、第2s至第4s内„„均为时间间隔。
区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。 考点二:路程与位移的关系
位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。 考点三:速度与速率的关系 速度 速率
物理意义 描述物体运动快慢和方向的物理量,是矢 量 描述物体运动快慢的物理量,是 标量
分类 平均速度、瞬时速度 速率、平均速率(=路程/时间) 决定因素 平均速度由位移和时间决定 由瞬时速度的大小决定 方向 平均速度方向与位移方向相同;瞬时速度 方向为该质点的运动方向 无方向
联系 它们的单位相同(m/s),瞬时速度的大小等于速率 考点四:速度、加速度与速度变化量的关系 速度 加速度 速度变化量
意义 描述物体运动快慢和方向的物理量 描述物体速度变化快 慢和方向的物理量 描述物体速度变化大 小程度的物理量,是 一过程量 定义式
单位 m/s m/s2 m/s
决定因素 v的大小由v0、a、t 决定 a不是由v、△v、△t 决定的,而是由F和
m决定。 由v与v0决定, 而且 ,也
由a与△t决定
方向 与位移x或△x同向,
即物体运动的方向 与△v方向一致 由 或 决定方向
大小 ① 位移与时间的比值 ② 位移对时间的变化 率
③ x-t图象中图线 上点的切线斜率的大 小值 ① 速度对时间的变 化率
② 速度改变量与所 用时间的比值
③ v—t图象中图线 上点的切线斜率的大 小值
考点五:运动图象的理解及应用
由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。 1. 理解图象的含义
(1) x-t图象是描述位移随时间的变化规律 (2) v—t图象是描述速度随时间的变化规律 2. 明确图象斜率的含义
(1) x-t图象中,图线的斜率表示速度 (2) v—t图象中,图线的斜率表示加速度 第二章.匀变速直线运动的研究
考点一:匀变速直线运动的基本公式和推理 1. 基本公式
(1) 速度—时间关系式: (2) 位移—时间关系式: (3) 位移—速度关系式:
三个公式中的物理量只要知道任意三个,就可求出其余两个。
利用公式解题时注意:x、v、a为矢量及正、负号所代表的是方向的不同, 解题时要有正方向的规定。 2. 常用推论
(1) 平均速度公式:
(2) 一段时间中间时刻的瞬时速度等于这段时间内的平均速度: (3) 一段位移的中间位置的瞬时速度:
(4) 任意两个连续相等的时间间隔(T)内位移之差为常数(逐差相等): 考点二:对运动图象的理解及应用 1. 研究运动图象
(1) 从图象识别物体的运动性质
(2) 能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义 (3) 能认识图象的斜率(即图象与横轴夹角的正切值)的意义 (4) 能认识图象与坐标轴所围面积的物理意义 (5) 能说明图象上任一点的物理意义
2. x-t图象和v—t图象的比较
如图所示是形状一样的图线在x-t图象和v—t图象中, x-t图象 v—t图象
①表示物体做匀速直线运动(斜率表示速度) ①表示物体做匀加速直线运动(斜率表示加速度)
②表示物体静止 ②表示物体做匀速直线运动 ③表示物体静止 ③表示物体静止
④ 表示物体向反方向做匀速直线运动;初
位移为x0 ④ 表示物体做匀减速直线运动;初速度为 v0
⑤ 交点的纵坐标表示三个运动的支点相遇时
的位移 ⑤ 交点的纵坐标表示三个运动质点的共同速度
⑥t1时间内物体位移为x1 ⑥ t1时刻物体速度为v1(图中阴影部分面积表 示质点在0~t1时间内的位移)
考点三:追及和相遇问题 1.“追及”、“相遇”的特征
“追及”的主要条件是:两个物体在追赶过程中处在同一位置。 两物体恰能“相遇”的临界条件是两物体处在同一位置时,两物体的速度恰好相同。
2.解“追及”、“相遇”问题的思路
(1)根据对两物体的运动过程分析,画出物体运动示意图
(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中
(3)由运动示意图找出两物体位移间的关联方程 (4)联立方程求解
3. 分析“追及”、“相遇”问题时应注意的问题
(1) 抓住一个条件:是两物体的速度满足的临界条件。如两物体距离最大、最小,恰好追上或恰好追不上等;两个关系:是时间关系和位移关系。
(2) 若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动 4. 解决“追及”、“相遇”问题的方法
(1) 数学方法:列出方程,利用二次函数求极值的方法求解
(2) 物理方法:即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解 考点四:纸带问题的分析 1. 判断物体的运动性质
(1) 根据匀速直线运动特点x=vt,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。
(2) 由匀变速直线运动的推论 ,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之差相等,则说明物体做匀变速直线运动。 2. 求加速度
(1) 逐差法
(2)v—t图象法
利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v—t图象),然后进行描点连线,求出图线的斜率k=a. 第三章 相互作用
考点一:关于弹力的问题 1. 弹力的产出
条件:(1)物体间是否直接接触 (2) 接触处是否有相互挤压或拉伸 2.弹力方向的判断
弹力的方向总是与物体形变方向相反,指向物体恢复原状的方向。弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
(1) 压力的方向总是垂直于支持面指向被压的物体(受力物体)。 (2) 支持力的方向总是垂直于支持面指向被支持的物体(受力物体)。
(3) 绳的拉力是绳对所拉物体的弹力,方向总是沿绳指向绳收缩的方向(沿绳背离受力物体)。 补充:物体间点面接触时其弹力方向过点垂直于面,点线接触时其弹力方向过点垂直于线,两物体球面接触时其弹力的方向沿两球心的连线指向受力物体。 3. 弹力的大小
(1) 弹簧的弹力满足胡克定律: 。其中k代表弹簧的劲度系数,仅与弹簧的材料有关,x代表形变量。
(2) 弹力的大小与弹性形变的大小有关。在弹性限度内,弹性形变越大,弹力越大。
考点二:关于摩擦力的问题
1. 对摩擦力认识的四个“不一定” (1) 摩擦力不一定是阻力
(2) 静摩擦力不一定比滑动摩擦力小
(3) 静摩擦力的方向不一定与运动方向共线,但一定沿接触面的切线方向 (4) 摩擦力不一定越小越好,因为摩擦力既可用作阻力,也可以作动力 2. 静摩擦力用二力平衡来求解,滑动摩擦力用公式 来求解 3. 静摩擦力存在及其方向的判断
存在判断:假设接触面光滑,看物体是否发生相当运动,若发生相对运动,则说明物体间有相对运动趋势,物体间存在静摩擦力;若不发生相对运动,则不存在静摩擦力。 方向判断:静摩擦力的方向与相对运动趋势的方向相反;滑动摩擦力的方向与相对运动的方向相反。 考点三:物体的受力分析 1.物体受力分析的方法 (1) 方法 (2) 选择
2.受力分析的顺序
先重力,再接触力,最后分析其他外力
3.受力分析时应注意的问题
(1) 分析物体受力时,只分析周围物体对研究对象所施加的力
(2) 受力分析时,不要多力或漏力,注意确定每个力的实力物体和受力物体,在力的合成和分解中,不要把实际不存在的合力或分力当做是物体受到的力 (3) 如果一个力的方向难以确定,可用假设法分析 (4) 物体的受力情况会随运动状态的改变而改变,必要时根据学过的知识通过计算确定
(5) 受力分析外部作用看整体,互相作用要隔离 考点四:正交分解法在力的合成与分解中的应用 1. 正交分解时建立坐标轴的原则 (1) 以少分解力和容易分解力为原则,一般情况下应使尽可能多的力分布在坐标轴上
(2) 一般使所要求的力落在坐标轴上 第四章 牛顿运动定律
考点一:对牛顿运动定律的理解 1. 对牛顿第一定律的理解
(1) 揭示了物体不受外力作用时的运动规律
(2) 牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关 (3) 肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因 (4) 牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例
(5) 当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律
2. 对牛顿第二定律的理解
(1) 揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性 (2) 牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态 (3) 加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度 3. 对牛顿第三定律的理解
(1) 力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力
(2) 指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同
考点二:应用牛顿运动定律时常用的方法、技巧 1. 理想实验法 2. 控制变量法 3. 整体与隔离法 4. 图解法
5. 正交分解法 6. 关于临界问题
处理的基本方法是:
根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件(更多类型见错题本)
考点三:应用牛顿运动定律解决的几个典型问题 1. 力、加速度、速度的关系
(1) 物体所受合力的方向决定了其加速度的方向,合力与加速度的关系 ,合力只要不为零,无论速度是多大,加速度都不为零
(2) 合力与速度无必然联系,只有速度变化才与合力有必然联系
(3) 速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小 2. 关于轻绳、轻杆、轻弹簧的问题 (1) 轻绳
① 拉力的方向一定沿绳指向绳收缩的方向 ② 同一根绳上各处的拉力大小都相等 ③ 认为受力形变极微,看做不可伸长 ④ 弹力可做瞬时变化 (2) 轻杆
① 作用力方向不一定沿杆的方向 ② 各处作用力的大小相等 ③ 轻杆不能伸长或压缩
④ 轻杆受到的弹力方式有:拉力、压力 ⑤ 弹力变化所需时间极短,可忽略不计 (3) 轻弹簧
① 各处的弹力大小相等,方向与弹簧形变的方向相反 ② 弹力的大小遵循 的关系 ③ 弹簧的弹力不能发生突变 3. 关于超重和失重的问题 (1) 物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力 (2) 物体超重或失重与速度方向和大小无关。根据加速度的方向判断超重或失重:加速度方向向上,则超重;加速度方向向下,则失重
(3) 物体出于完全失重状态时,物体与重力有关的现象全部消失: ① 与重力有关的一些仪器如天平、台秤等不能使用 ② 竖直上抛的物体再也回不到地面 ③ 杯口向下时,杯中的水也不流出 高一物理公式总结
一、质点的运动(1)------直线运动 1)匀变速直线运动
1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as 3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s
时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛
1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 ) 3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动 万有引力 1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt 3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2 5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2 合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo 7.合位移S=(Sx^2+ Sy^2)1/2 ,
位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。 2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R
5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR 7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s 角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。 3)万有引力
1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它们的连线上 3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2 5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s 6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。 机械能 1.功
(1)做功的两个条件: 作用在物体上的力. 物体在里的方向上通过的距离.
(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J) 1J=1N*m
当 0<= a <派/2 w>0 F做正功 F是动力 当 a=派/2 w=0 (cos派/2=0) F不作功 当 派/2<= a <派 W<0 F做负功 F是阻力 (3)总功的求法:
W总=W1+W2+W3„„Wn W总=F合Scosa
2.功率
(1) 定义:功跟完成这些功所用时间的比值. P=W/t 功率是标量 功率单位:瓦特(w) 此公式求的是平均功率 1w=1J/s 1000w=1kw
(2) 功率的另一个表达式: P=Fvcosa
当F与v方向相同时, P=Fv. (此时cos0度=1) 此公式即可求平均功率,也可求瞬时功率 1)平均功率: 当v为平均速度时
2)瞬时功率: 当v为t时刻的瞬时速度
(3) 额定功率: 指机器正常工作时最大输出功率 实际功率: 指机器在实际工作中的输出功率 正常工作时: 实际功率≤额定功率 (4) 机车运动问题(前提:阻力f恒定) P=Fv F=ma+f (由牛顿第二定律得) 汽车启动有两种模式
1) 汽车以恒定功率启动 (a在减小,一直到0) P恒定 v在增加 F在减小 尤F=ma+f 当F减小=f时 v此时有最大值
2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0) a恒定 F不变(F=ma+f) V在增加 P实逐渐增加最大 此时的P为额定功率 即P一定
P恒定 v在增加 F在减小 尤F=ma+f 当F减小=f时 v此时有最大值
3.功和能
(1) 功和能的关系: 做功的过程就是能量转化的过程 功是能量转化的量度
(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量 功是物体状态变化过程有关的物理量,即状态量 这是功和能的根本区别.
4.动能.动能定理
(1) 动能定义:物体由于运动而具有的能量. 用Ek表示 表达式 Ek=1/2mv^2 能是标量 也是过程量 单位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 动能定理内容:合外力做的功等于物体动能的变化 表达式 W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功 5.重力势能
(1) 定义:物体由于被举高而具有的能量. 用Ep表示 表达式 Ep=mgh 是标量 单位:焦耳(J) (2) 重力做功和重力势能的关系 W重=-ΔEp
重力势能的变化由重力做功来量度
(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关 重力势能是相对性的,和参考平面有关,一般以地面为参考平面 重力势能的变化是绝对的,和参考平面无关
(4) 弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关 弹性势能的变化由弹力做功来量度
6.机械能守恒定律
(1) 机械能:动能,重力势能,弹性势能的总称 总机械能:E=Ek+Ep 是标量 也具有相对性
机械能的变化,等于非重力做功 (比如阻力做的功) ΔE=W非重
机械能之间可以相互转化
(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能 发生相互转化,但机械能保持不变
表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功 v=v0+at 加速度 x=vt+1/2at2 位移 v2-v02=2at F=ks 胡克定律 f=Fμ 摩擦力
1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as 3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh 回答者: 隰隰同学 - 秀才 二级 1-9 15:42
重力的公式:G=mg,其中G为重力,m为质量,g为重力加速度
弹力的公式:F=kx,其中F为弹力,k为劲度系数,x为弹簧的伸长量 摩檫力公式:F=UN,F为摩檫力,U为动摩檫因素,N为正压力 直线运动
匀速直线运动的公式:S=VT
因篇幅问题不能全部显示,请点此查看更多更全内容