您的当前位置:首页Effect of Disturbances on the Convergence of Failure Intensity

Effect of Disturbances on the Convergence of Failure Intensity

2020-01-20 来源:飒榕旅游知识分享网
EffectofDisturbancesontheConvergenceofFailureIntensity

Jo˜aoW.Cangussu

DepartmentofComputerScienceUniversityofTexasatDallasRichardison-TX75083-0688,USA

cangussu@utdallas.edu

AdityaP.Mathur

DepartmentofComputerSciences

PurdueUniversity

WestLafayette-IN47907-1398,USA

apm@cs.purdue.edu

RaymondA.DeCarloDepartmentofElectricalandComputerEngineeringPurdueUniversity

WestLafayette-IN47907-1285,USA

decarlo@ecn.purdue.edu

Abstract

Wereportastudytodeterminetheimpactoffourtypesofdisturbancesonthefailureintensityofasoftwareproductundergoingsystemtest.Hardwarefailures,discoveryofacriticalfault,attritioninthetestteam,areexamplesofdisturbancesthatwilllikelyaffecttheconvergenceofthefailureintensitytoitsdesiredvalue.Suchdisturbancesaremodeledasimpulse,pulse,step,andwhitenoise.Ourstudyexamined,inquantitativeterms,theimpactofsuchdistur-bancesontheconvergencebehaviorofthefailureinten-sity.Resultsfromthisstudyrevealthatthebehaviorofthestatemodel,proposedelsewhere,isconsistentwithwhatonemightpredict.Themodelisusefulinthatitprovidesaquantitativemeasureofthedelayonecanexpectwhenadisturbanceoccurs.

1Introduction

Thesystemtestphaseofthesoftwarelifecycleissub-jecttovarioustypesofdisturbances,bothunforeseenandknownapriori.Whenadisturbanceoccursduringthetestphase,itmaycauseadelayintherealizationoftheobjec-tives.Inthestudyreportedhere,thefailureintensityofthesoftwareproductundertestisofinteresttous.Thuswewanttounderstand,andpredict,howwilltheconvergenceoffailureintensitytoitsdesiredvaluebeaffectedduetoadisturbance.Thisstudyisbasedentirelyonamodelofthesoftwaretestprocessproposedelsewhere[1].

tothetwoquestionsabove.Withrespecttothisstatemodel,ourinterestisinobtainingananswertothefollowingtwoquestions.

Disturbancemodeling:Howdoesonemodelquantitativelythedisturbancesthatcanaffecttheconvergenceofthetestprocesstotheob-jective?

Impactofdisturbances:Howdoesadistur-banceeffecttheconvergenceofthetestpro-cesstowardsthefailureintensityobjective?

1.2Problemcontext

TheuseoffeedbackcontrolduringtheSTPisillustratedin

Figure1.Thefigureshowsfourkeycomponentsthatpar-ticipateinthecontrolprocess.ThesearetheActualSTPwhichconsistsofthetestengineers,tools,documentation,etc.,aStateModeloftheSTPwhichisModelS,aController,andthetestmanager.Themanage-mentdecideshowmanytesterstoemploytotesttheprod-uct.Thisnumberistheinitialvalueof.Thetestmanagerestimatesthequalityofthetestprocess.Thecomplexityofthesoftwareundertestiscomputedasaconvexcombina-tionofseveralwellknowncomplexitymetricssuchasthenumberoffunctionpoints,linesofcode,andthenumberofdataflows[3].Aninitialestimateofthefailureinten-sityismadeofthesoftwareproductreadytoenterthetestphase.Furthermore,weassumethattoplanandmonitortheprogressoftheSTP,thetestmanagerdi-videstheentirephaseintoasequenceofcheckpointsdenotedbycpcpcpwithcpbeingthefirstcheck-pointaftertestinghasbegunandcpthedeadline.There-alizationofthefailureintensityobjectiveisdistributedoverthesecheckpoints.Thus,checkpointcpisspecifiedasa

pair(

),whereissometimepriortothedeadlineandisthedesiredfailureintensityoftheproductatcheck-pointcp.

Atcheckpointcp,oftheproductisestimatedandcomparedagainsttheexpectedcomputedbythestatemodel.Theerrorsignalisinputtoacon-troller.Usingthiserrorsignal,,,and,thecontroller

computesasetofpossiblechanges

andthatcouldbemadetoand,respectively,inorderfortheSTPtomeetthereliabilityobjectiveonorbeforethedeadline.Thecomputedchangesaremadeavailabletothetestmanagerwhomayormaynotchoosetoignorethem.ThoughFig-ure1givestheimpressionthatonlyasinglepair(

and)ofvaluesisoutputbythecontroller,inrealitythecon-trolleroutputsafinitesetofsuchpairsfromwhichthetestmanagercouldselect.TheSTPresumeswithaworkforce

of(

)andaprocessqualityof(),wherescλ0γ + ∆γ(cp )i-1(cp )i+w∆wSTPλif(cp )i-1+f(cp )iInitial Settingww’fγ(0)w (0)∆f(cp )iTest∆Controller∆λif

∆γ(cp )iManager∆γ’+wf(cp )i-1+∆wf(cp )iModel Sγ + ∆γ(cp )(State Modeli-1(cp )iof the STP)λeiscλ0

Figure1.Closedloopcontrolofthesoftware

testprocessusingreliabilitymeasurements.

istheestimateofthefailureintensityatcheckpointcp.istheexpectedfailureintensityoftheproductcomputedbyModelSatcheckpointcp.

anddenotetheactualchangesmadebythetestmanager.

TheSTPmodelandthecontrollercooperatetoformafeedbackcontrolloop.UnforeseendisturbancesintheSTPareaccountedforbyupdatingestimatesofthemodelparameters.Thecontrolloopoffersthetestmanagerop-portunitiestomakealterationstotheSTPatanycheck-point.Thesealterationscouldcomeinmanyformssuchasachangeinthenumberoftesters,inthequalityofthetestprocess,inthetestobjectivesthemselves,oranycombina-tionofthese.Thustheinherentuncertaintyandthevari-abilityoftheSTPisaccountedforinthefeedbackcontrolloop.

Theremainderofthispaperisorganizedasfollows.Sec-tion2providesanoverviewofthestatemodelthatservesasthebasisforstudyingtheimpactofdisturbancesonthecon-vergenceofthefailureintensity.Themathematicalback-groundrequiredforacompleteunderstandingofthemate-rialinthispaperisbeyondthescopeofthispaperandisfoundinstandardtextsonautomaticcontrol[4,5].Thedef-initionsofdifferenttypesofinputsignals,unforeseenper-turbationsinModelS,andtheircorrelationtotheSTPareprovidedinSection3.TheresultsofstimulatingModelSwithimpulse,pulse,step,andwhitenoiseinputsarepre-sentedinSection4andanalyzedinSection5.Section6summarizesthiswork.

2ReviewofStateModeloftheSTP1

AlinearmodeloftheSTPisbasedonthreeassumptionspresentedbelow[3].TheseassumptionsarebasedonananalogyoftheSTPwiththephysicalprocesstypifiedbya

spring-mass-dashpotsystemandthepredator-preysystem.Acompletedescriptionandjustificationofthisanalogyandthechoiceofalinearmodelisoutsidethescopeofthispa-perandisfoundelsewhere.[3]

Thewidespreaduseofdifferentialequationstomodelmanydifferenttypesofsystems[5,6]combinedwiththefactthatmostofsuchmodelsweredevelopedusinganalo-giestophysicalsystemswithassumptionssimilar[7,8]tooursfurtherjustifythechoiceofasecondorderlinearmodel.

Assumption1:Themagnitudeoftherateofdecreaseoffailureintensityofasoftwareproductisproportionaltothenetappliedeffortduringthetestphaseandinverselypro-portionaltothecomplexityoftheproduct.

.Parameter

dependsonthesoftware

projectcharacteristicsandwillhavethevalues:i-foranorganicmodeproject;ii-foransemi-detachedmodeprojectand;iii-foranembedded

modeproject.Thisclassificationandtherespectivevalues

weredefinedandempiricallyvalidatedfortheCOCOMOmodel[11].

Assumption2canbeunderstoodwithanotheranalogy.Inaspringtherestoringforceisdeterminedbythespringstiffnessandbyhowmuchthespringisextendedbeyonditsnaturallength.Increasingthespringstiffnessortheexten-sionincreasestherestoringforce.Theeffectivetesteffortcanbeinterpretedinananalogousway.Thefailureinten-sityisanalogoustothespringlength.Atthebeginningofthetestphaseislargerthanitistowardstheend.Hence,theeffectiveeffortdecreasesasdecreases.Theworkforcecanberelatedtothespringstiffness.Thelargertheworkforce,thegreatertherestoringforce,i.e.,theeffectiveef-fort.Thusspringstiffnessisanalogousto

andspringextensiontofailureintensity().InEqn.2,remainscon-stantoveraperiodandmustbecalibratedfortheprojectunderanalysis.

Assumption3:Theresistancetoadecreaseinthefailureintensityopposes,isproportionaltothethevelocityoffail-ureintensity,andinverselyproportionaltotheoverallqual-ityofthetestphase,foranappropriateconstant.

.Therefore,asmallcoefficientofviscosityis

analogoustoacarefullyconductedtestphaseandthusthenumberofnewerrorsinsertedissmall.Largercoefficientofviscosityisanalogoustothetestphaseinwhichmoreerrorsareintroducedthanwouldbeintroducedundernor-malcircumstances.Thevelocitycomponentinthedashpotisanalogoustothefailureintensityreductionvelocity().Thus,theoverallqualityofthetestphase,denotedby(),andtherateatwhichfailureintensityisdecreasing,deter-minesthefailureintensityreductionresistanceeffortwhichisanalogoustothedampingforcegeneratedbythedashpot.InEqn.3,ismerelyaconstantofproportionality.

CombiningEqs.1,2,and3inaforcebalanceequation

(

)andorganizingitinastatevariableformat()leadstothefollowingsystemofequations.

parametervalues,generatesinFigure1.UsingtherelationshipinEq.6,onecomputes.

(6)

2.1Estimationofmodelparameters

isrelativelyeasytocomputeasitisdefinedtobethenumberoftesterstestingtheproduct.Thevalueofmustbeadjustedforanypart-timeandtemporaryperson-nel.Parametersandarecomputedbyapplyingacon-vexcombination[12]ofavailablemetrics.TheremainingparametersareestimatedthroughtheuseofSystemIdenti-fication[13]techniques[14].Animportantcharacteristicofourapproachisthatestimatesofallparametersareupdatedateachcheckpointtherebyimprovingtheiraccuracywiththepassageoftime.Changesinthetestenvironment,suchasintheworkforceandthequalityoftheSTP,areaccountedforasandwhentheyoccur.[14]

2.2Computing

and

Inafeedbackcontrolsystem,thelargesteigenvalueofthesystemdeterminestheslowestrateofconvergenceanddominateshowfasttheoutputvariablesconvergetotheir

sothatitdesiredvalues.Therefore,inordertocontrol

reachesitsdesiredvaluebythedeadline,wemustadjustthelargesteigenvalueappropriately.Given,thefail-ureintensityattime,and,thedesiredfailure

later,weusethefollowingequationtointensityattime

determinetheamountbywhichtoadjustthelargesteigen-.2value

(7)

Weknowthevaluesof,andatcheck-pointcpandhencewesolveEq.7andfindthe.Theeigenvaluesofasystemaredefinedvalueof

bytherootsofthecharacteristicpolynomial(

).Computingthecharacteristicpolynomial

ofourmodelleads

(8)

whereand.UsingEq.8we

computethevariationsintheworkforceandinthequalityoftheprocessnecessarytomeetthedesiredqualityobjec-tivebythedeadline.

Fd

1/∆t

Impulse Input

∆t 0Example: Fd modeled as the replacement

of a component of the system

∆ttimeFd

Pulse Input

∆t = constant

Example: Fd modeled as the time tomigrate the system from the

∆t

timedeveloper’s to the user’s environment

Fd

Step Input

Example: Fd modeled as an increasein the communication level of thetimetest team for the remaining period

Fd

White Noise Input

Example: Fd modeled as a combination

of unforeseen perturbations thattimeoccur during the STP

Figure2.Differenttypesofinputstorepresent

unforeseenperturbationsinaSTP.

backupthatcausesthelossofimportantfilesforoneday,seemstobeareasonabledisturbancetobemodelbyanim-pulse.Supposethatatthebeginningofthedaythefail-ureintensityisandattheendoftheday,priortothepoweroutage,thefailureintensityis,for.Aninstantaneousstimulusduetothepower

outagewilldrivethesystemfromstate

to.

AnotherexampleofanimpulseinputfortheSTPisthereplacementofapre-testedcomponentofthesoft-wareproductbyadifferent,thoughsupposedlyfunction-allyequivalent,component.Suchreplacementmayoccurduetoaneedtoimprovetheperformanceoftheapplicationundertest.Asumingthatmostdefectsintheoldcompo-nenthavebeenremoved,thisreplacement,whichservesasaninstantaneousstimulus,willlikelyincreasethefailureintensityfromthecurrentleveltoahigher

level

,whereisanestimateofthefailureintensityofthenewcomponent.Onemightar-guethatthenewcomponentmaybemorereliablethantheoneitreplaced.However,weassumethatthisisnotlikelysincebothcomponentsweredevelopedundersimilarcir-cumstancesandthesecondcomponenthadtomeettheper-formancerequirements.Therefore,inthiscase,weneedto

computetheinput

inEqn.4thatwilldrivethesystemfromto.Thenextsubsec-tionaddressesthisissue.Intheremainderofthispaperweusethescenarioofthissecondexampleasthecauseofan

impulseinputsignaldisturbingtheprocess.Computingtheresponsetoanimpulseinput

ThegeneralformatofanimpulseinputispresentedinEqn.9.SincethevaluesoftheDirac-deltafunctionareknown,weneedtocomputethevectorofcoefficientsof.

(9)

whereistheDirac-deltafunctionandisthe

derivativeof.

Theorem1(CharacterizationoftheSolution)[6]:Forthe

timeinvariantsystemdynamics

andagiven,supposethattheinputassumestheformatasde-scribedinEqn.9.Letbethecontrollabilitymatrix.Then

(10)

Theorem1relatestothevaluesofand,andthecontrollabilitymatrix,butitdoesnotasserttheexistenceofthevector.Theexis-tenceofasolutionisaddressedinthefollowingcorollary.

Corollary[6]:Letbe.Foreach,thereexistsauniqueimpulseinput,definedinEqn.9,whichwilldrivethe.

toifandonlyif

TheMATLABfunctioninFigure3isusedtocompute

thevectorofcoefficients

fortheimpulseinputforthesystemdescribedinSection2.

functionret=Comp_Impulse(sc,zeta,wf,...

b,chi,gamma,x0,x1)

A(1,1)=0;A(1,2)=1;

A(2,1)=-(wf*zeta)/(scˆ(1+b));A(2,2)=-(chi)/(sc*gamma);B=[01/sc]’;D=[0];

C=[10];

sys=ss(A,B,C,D);Q=ctrb(sys);X=x1-x0;

ret=pinv(Q)*X;return

Figure3.MATLABfunctionforthecomputa-tionof

thatcomposestheimpulseinputtodrivethesystemfromstateto.

3.4Pulseinput

Thedifferencebetweenanimpulseandapulsesignalistheirrespectivedurations.Whereasisafinitenon-zeroquantityforapulse,ittendsto0foranimpulse.Thefre-quencyofapulsemightalsovary.ThoughthestudyoftheresponseofModelRtopulsesofdifferentfrequenciesisanimportantexercise,wefocusonasinglepulseoffixedlength.

Apulsemaybeusedtomodelanunexpectedone-halfdaytrainingsessionfortheentireorpartofthetestteam.Inthiscase,thedisturbanceisassumedzeropriortotime

,i.e.beforethestartofthetrainingsession.

assumesapositivenon-zerovalueat.Thisvalueofiskeptconstantovertheentiredurationofthetrainingafterwhichisresettozero.ThestructureofasinglepulseinputsignalisdepictedinFigure2.

Anotherexampleofadisturbancethatismodeledasapulseisthemigrationoftheproductfromthedeveloper’senvironmenttotheuser’senvironment.Suppose,forexam-ple,thatthemigrationperiodisoneweek.Thetestprocessdoesnotprogresswhilethesystemisundermigrationandapulseisanappropriatemodelforthisdelay.Thedifferencebetweenthisexampleandthetrainingsessionisinthesideeffectsrelatedtotheuser’senvironment.Thatis,theesti-matedfailureintensitywillmostlikelyincreasewhentheproductistestedintheuser’senvironment.

3.5Stepinput

Astepinputisapulsewithaninfinitewidth.Inourstudy

astepinputismodeledbysetting

tozeropriortosometime

andsettingittosomeconstantsoonafter.AstepinputisshowninFigure2.

OnedisturbanceinSTPthatcanbemodeledusingastepinputistheincreaseinthecommunicationanddoc-umentationlevelduetothereplacementofthetestman-ager.Assumethatthenewtestmanagerrequiresadditionalregularmeetingsanddemandsmoreeffortincollectingdataanddocumentingtheprocess.Thoughthesechangesmayincreasetheoverallqualityoftheprocess,theymayalsoslowitdown.Thereisatradeoffinhowmuchcancommunicationanddocumentationincreasewithoutslow-ingdowntheprocess.Inthiscaseweassumeanover-communication/documentationresultingindeceleration.

3.6Whitenoise

Whitenoiseisarandominputsignalthatneverrepeatsandhasaflatfrequencyspectrum.Usually,thereisalargenum-berofsourcesofdisturbancesinaSTP.Acombinationofdisturbancesgeneratedbythesesourcesismodeledaswhitenoise.Sourcesofdisturbancesthatareassumedtocombine

intoawhitenoiseincludepersonalproblemssuchasillness,software/hardwareproblemsrelatedtotheenvironmentinwhichthetestisbeingconducted,andafatalfailureofacriticalhardwarecomponent.Theseproblemsmayormaynotoccurandthereisnoeasywaytopredictthefrequencyorintensityofanyofthemortheircombination.Therefore,arandomsignal(whitenoise)seemstobeanappropriatemodelofsuchunforeseenperturbationsintheSTP.

4Results

Impulse Input100no disturbanceimpulse input disturbance at t=1090impulse input disturbance at t=50impulse input disturbance at t=908070ytisne60tni er50uliaf 40− λ302010desired λ0050100150t − timeFigure4.Effectofanimpulseinputonthefailureintensityofasoftwareproduct.Theimpulseismodeledsoastocausea5%in-creasein

atthetimeofoccurrence.TheimpulseoccursattheTADsspecifiedearlier.

Theimpactofvariousdisturbancesontheconvergence

ofthefailureintensity

wasstudiedbysettinginModelRtoappropriatevaluesandsolvingthemodelfor

.Theimpactwasstudiedinisolationforeachofthefourinputtypes,namelyimpulse,pulse,step,andwhitenoise.Eachinputwasapplied(i)earlyinthetestpro-cess,(ii)somewhereinthemiddleofthetestprocess,and(iii)closetotheendofthetestprocess.Thisvariationinthetimeoftheapplicationoftheinputallowsustodeter-minethedifferencesin

duetothedifferenttimeswhenthedisturbancesactuallyoccurduringtheSTP.Astheterms“early”,“somewhereinthemiddle”,and“closetotheend”arefuzzy,wearbitrarilysetthetimes(indays)atwhichthe

disturbanceisappliedto

.Werefertothesethreetimesas“timeoftheapplicationofadisturbance”or,sim-ply,TADs.

Unlessstatedotherwise,thefollowingparameterval-uesareassumedduringthecomputations:theworkforce

Proportinal Pulse Input100no disturbancepulse input disturbance at t=1090pulse input disturbance at t=50pulse input disturbance at t=908070ytisne60tni er50uliaf 40− λ302010desired λ0050100150t − time

Figure5.Effectofapulseinputonthefail-ureintensity.ThepulseisappliedatdifferentTADs.TheinputateachTADareequivalent

to,respectively,

.Thedurationof,eachpulseandis8

days.

,qualityofthetestprocess,complex-ityoftheapplicationundertest,modelparame-ters

,,and.Theparameterval-ueshavebeenselectedarbitrarilyandkeptconstantinthisstudy.Thedesiredreductioninthefailureintensityismea-suredintermsofpercentoftheinitialvalue,exactvaluesofthefailureintensityarenotofconcerninthisstudy.Itisassumedthatthetestmanagerisinterestedinreducingthefailureintensityto5%ofitsinitialvalue.Thus,forexample,iffailures/daythenfailureperday,wheredenotesthedeadlinebywhichthesystemtestistobecompleted.

4.1Impulseinput

Animpulseinputmodels,forexample,thereplacementofanalreadytestedcomponentbyanuntestedone.Weas-sumethatsuchareplacementcausesanincreaseof5%in

soonafterthedisturbanceoccurs.Eqn.9isaprecisemodeloftheimpulseinput.Toobtainthevalueof

inresponsetotheimpulseinputweneedtocomputethevectortodrivethesystemfromitscurrentstate

to.Comput-ingthesevaluesusingthescriptfromFigure3resultsinthe

followingimpulseinputsfor

.

Figure4showstheeffectsofvariousimpulseinputson.Asobservedfromthisfigure,theexpectedtimetoreduceto5%ofthevalueatthestartofthetestprocessis107days.However,whenanimpulseoccursattimethedesiredreductiontakesplacewithadelayof5days.Thecorrespondingdelaysinthereductionofto5%ofitsinitialvalueare,respectively,12and28days,forand.

Constant Pulse Input100no disturbancepulse input disturbance at t=1090pulse input disturbance at t=50pulse input disturbance at t=908070ytisne60tni er50uliaf 40− λ302010desired λ0020406080100120140160180t − timeFigure6.ResultsoftheperturbationofthesystemsbyanpulseinputsignalatTADs.Theinputsignalgeneratedisequivalentto

forallthethreetimeinstancesandit

persistsfor8days.

4.2Pulseinput

TwoexamplesofdisturbancesinSTPthatcanbemodeledbyapulsearepresentedinSection3.4.Nextwedetermine

theimpactofthesedisturbanceson

.AsshowninFig-ure5,atrainingperiodof8daysfortheentiretestteamde-laystheprogressofthetestprocessbythesamenumberof

days.Thevalueof

iscomputedbygeneratinganequiv-alent,thoughopposite,forcetotheeffectivetesteffort,

i.e.,

.Noticethattheabsolutevalueofisnotaconstant,butitsrelativevalueisproportionaltothevalueof.

UnlikethebehaviorexhibitedinFigure5,thevaluesofinFigure6remainconstantoveraperiodof8days.For

thethreetimeinstancesused,iscomputedastheequiva-lentof.,i.e.,

Therefore,theabsolutevalueofisthe

sameforthethreeperiodsandtherespectivedelaystoachievethesamegoalare9,21and44daysasisobservedfromFigure6.

4.3Stepinput

Anincreaseinthecommunicationoverheadanddocumen-tationismodeledasastepinput.ThestepinputisappliedtotheSTPatTADsspecifiedearlier.Twodifferentwaysareusedtotogeneratethestepinput.Thefirstwayrep-resentsanincreaseincommunicationequivalentto60%oftheeffectivetesteffort,i.e.,

andisnamed“proportional

step.”TheeffectsofthisstepinputonareshowninFigure7wheredelaysof43,33,and16daysareobserved,respectively,forthethreeTADs.

Proportional Step Input100no disturbancestep input disturbance at t=1090step input disturbance at t=50step input disturbance at t=908070ytisne60tni er50uliaf 40− λ302010desired λ0020406080100120140160180t − timeFigure7.ResultsoftheperturbationofthesystemsbyanstepinputsignalatTADs.Theinputsignalsforthesetimeinstancesare

equivalentto

,and,respectively.

Thesecondwaytogeneratethestepinputistouseanabsolutestepinput.Inthiscase,iscomputedasaforceequivalentto15%oftheeffectivetesteffortattime,i.e.,

.Theeffectsofstepinputonareshownin

Figure8.

4.4Whitenoiseinput

Wemodelwhitenoisebysetting

.Parameter

is

Constant Step Input100no disturbancestep input disturbance at t=1090step input disturbance at t=50step input disturbance at t=908070ytisne60tni er50uliaf 40− λ302010desired λ0020406080100120140160180t − timeFigure8.ResultsoftheperturbationofthesystemsbyanstepinputsignalatTADs.Theinputsignalgeneratedisequivalentto

forallthethreetimeinstancesanditpersistsfortheremainingperiod.

distributednormallyovertherange.Themeanvalueoffluctuatesaround1withastandarddeviationofap-proximately0.4foreachofthethreecases.TheeffectsofapplyingawhitenoiseatTADsareshowninFigure9.Thedelaysassociatedwitheachofthethreecasesis60,47,and24,respectively.

5Analysis

Wenowanalysetheresultspresentedabove.Ofprimaryconcernisthedelayassociatedwitheachtypeofinput.Anysideeffectsassociatedwiththeinputsignalarealsoconsid-ered.Thedelaysduetovariousdisturbancesaresumma-rizedinTable5.

Impulseinput

WeobservefromFigure4thattheimpactofanimpulse

inputthatdrives

attoincreaseswiththeTAD.Toexplainwhysupposethatcom-ponentisreplacedbycomponent.Duringtheearlyphaseofthetestcycleitislikelythatanditsinterfacewiththeothercomponentshasnotbeentested.Thus,itisreasonabletoassumethatthechangeinfailureintensity

duetothereplacementof

bywillbeonlyduetothepossiblypoorqualityofleadingtoa5%increaseinthefailure.However,laterintheprocess,additionaltestinghasoccurredandthefailureintensityoftheapplicationislikelytobemuchlessthanwhatitwasduringtheearlypartof

White Noise Input100no disturbancewhite noise input disturbance at t=1090white noise input disturbance at t=50white noise input disturbance at t=908070ytisne60tni er50uliaf 40− λ302010desired λ0020406080100120140160180t − time

Figure9.Effectsofwhitenoiseonthefail-ureintensity.,whereis

distributednormallyover

.thetestcycle.Thus,relacementatthistimecausesalargerincreaseinthefailureintensityandisduetofailuresasso-ciatedwithandwiththeinterfacesbetweenandtheremainderofthesystem.

Figure10showsthedelayintheconvergenceofthefail-ureintensitytoitsdesiredvaluewhichis5%ofitsinitialvalue.Thedelayincreaseswiththetimeatwhichtheim-pulseisapplied.Eventuallythefailureintensitydoescon-vergetoitsdesiredvalueasinFigure10(a).Replacementof

acomponentwhen

isclosetozeroleadstoanincreasein.Thetimetogetbacktoitsvalueprevailingjustbeforethisincreaseisnearlyconstantandexplainstheeven-tualconvergenceinFigure10(a).ThelaterthereplacementofacomponentthelargertheinterfacefailuresintroducedleadingtotheovershootbehaviorinFigure10(b).Similarargumentjustifiesthestabilizationofthedelay.

Pulseinput

Aspointedoutearlier,thepulseisrepresentedintwodif-ferentways.ThedelayduetoproportionalpulseinputdoesnotchangewithTAD.Toexplainwhy,supposethatsuchdisturbanceisduetoatrainingperiodof8daysfortheen-tiretestteam.Thetrainingwilllikelydelaytheprocessbythesamenumberofdaysbutwillnotincreaseordecreasethefailureintensity.Therefore,thetimewhenitoccursdoesnotimposeanysideeffectonthetestprocessascanbeno-ticedfromFigure5.Notethattrainingwilllikelyincreasethequalityofthetestprocess()andthusspeedupthecon-vergenceoftoitsdesiredvalue.However,inthisstudyweretaintoitsoriginalvalueandhencetheproportional

Table1.Delay,measuredin“days”,intheconvergenceofthefailureintensityto5%ofitsinitialvalue.Thedisturbancesoccurat

times

.Theexpectedtimeforconvergencewithoutanydisturbanceis107days.

Typeof

Delay

52899944431673736024

pulsecausesaconstantdelayregardlessofthetimeofits

occurrenceintheSTP.

Theconstantpulseinputisrelatedtothemigrationofthesystemfromthetestenvironmenttotheuser’senvironment.Inourstudyweassumedatotalof8daysforthemigration.AsseeninTable5,thedelayinconvergenceisaffectedbyTAD.Thisisduetothesideeffectsduringmigration.Dur-ingmigration,atthebeginningofthetestprocess,mostofthefeaturesrelatedtotheenvironmenthavenotbeentestedandhencethedelayinthecompletionofthetestispropor-tionaltothemigrationtime,whichis8daysinthiscase.Ifthemigrationoccursinthemiddleoftheprocess,i.e.at

,someoftheenvironmentfeatureshavealreadybeentestedandanincreaseinresultsduetothedifferencesbe-tweenthetwoenvironmentsthatexistbeforeandafterthemigration.ThisincreaseinresultsinanincreaseinthedelayasnoticedinFigure6.Anyincreaseinisconsid-eredanovershootbecauseweassumethatthemigrationpersedoesnotaffect.

AbehaviorsimilartotheonepresentedbytheimpulseinputinFigure10isobservedinFigure11.Thedelayin-creaseswithTADuntilitstabilizesatacertainlevelasde-pictedinFigure11(a).Figure11(b)isthecounterpartofFigure10(b)fortheimpulseinput.Thedifferencesarenotintheshapeofthecurve,butinthevalues.Thedelaysfortheimpulseandpulseinputsstabilizeat158and187days,respectively.Also,theovershootassociatedwiththepulsereachesamaximumvalueof15.62,almostfivetimeslargerthantheovershootof3.29fortheimpulseinput.Thisbe-haviorisconsistentwithwhatonemightexpectandisduetothelongerpersistenceofthepulsewhencomparedtothatofanimpulseinput.

(a)

200

150

yale100

d5000

50

100

150

200

250

300

350

400

impulse time(b)3.53to2.5oh2sre1.5vo10.50050100150200250300350400impulse timeFigure10.(a)-Delayassociatedwithanim-pulseinputstimulatingthesystematacer-taintime.(b)-Overshootassociatedwithanimpulseinputstimulatingthesystematacer-taintime.

Stepinput

Inourstudythestepinputmodelsanincreaseinthecom-municationoverhead.Fortheproportionalstepinput,assumesavalueproportionaltoandinflictsalargedelaywhenitoccursearlyintheprocessbecauseitpersiststhroughouttheSTP.Thedelayassociatedwithastepinput

startsat43dayseventhoughtheinputoccursat

.Thedelaydecreasesto33and16days,respectively,when

thestepinputoccursat

and.Figure12showsthedecreaseinconvergencedelayasTADmovesto-wardstheendoftheSTP.Weareawareofthetradeoffinincreasedcommunicationandhereweconsiderthelevelofcommunicationhascrossedtheborderofbeingbeneficial.Thereisnoovershootduetoastepinputasonewouldnotexpectanyincreaseinthefailureintensityduetoanincreaseincommunicationoverhead.

AsaturationeffectcanbeobservedinFigure8whenthestepinputassumesaconstantvalue.Thereisnoconditionlinkedtotheincreaseofthecommunicationlevelthatwouldleadtoasaturationinthetestprocess.Itiswellknownthatsuchbehaviorisrelatedtothecriteriausedandthequalityofthetestprocess.Itisinappropriatetomodelthecommu-nicationoverheadusingaconstantvaluestepinput.

Whitenoiseinput

Figure9showsthatthedelayassociatedwithTADofawhitenoiseinputrangesfrom0to2timesthevalueoftheeffectivetesteffort.Asexpected,theearlierthenoisestarts

(a)200150yale100d500050100150200250300350400pulse time(b)2015toohsr10evo50050100150200250300350400pulse timeFigure11.(a)-Delayassociatedwithapulseinputstimulatingthesystematacertaintime.(b)-Overshootassociatedwithapulseinputstimulatingthesystematacertaintime.

thelongerthedelay.Thedelayis60dayswhenthenoise

signalisappliedat

anddropsto47and24days,respectively,forand.However,webelievethatthedisturbancesthatcanbemodeledaswhitenoisearemoreprevalentduringtheearlypartoftheSTPthanduringitslaterpart.Therefore,thefrequencyofthenoiseseemstobeamoreinterestingparametertoconsider.

Figure13showsthedelayassociatedwithawhitenoiseinputappliedstartingalwaysatthestartoftheSTP.Thex-axisrepresentshowfrequentlythedisturbancemodeledbythewhitenoiseoccursandrangesfrom0to1,i.e.,from0%to100%.Asbefore,thevalueofthenoiseiscomputed

as

,forrangingfrom0to2.AsobservedfromFigure13,thedelayincreaseswiththefre-quencyofthewhitenoiseinput.Thisbehaviorappearstobeconsistentwithreality.

6Summary

Astudywasundertakentoexaminetheimpactofvarioustypesofdisturbancesthatmightoccurduringasystemtestphaseontheconvergenceofthefailureintensityoftheprod-uctundertest.Disturbancesaremodeledasimpulse,pulse,step,andwhitenoiseinputstotheSTP.TheseinputsarethenappliedtoastatemodeloftheSTP,proposedinanearlierwork,andtheeffectobservedonthefailureinten-sity.Resultsconfirmthecommonlyobservedphenomenonthatthedelayintheconvergenceofthefailureintensitytoitsdesiredvaluedependsonthetypeoftheinputanditstimeofoccurrence.Theuseofthestatemodelassistinthe

5045

4035

30

yale25d201510

50

0

20

40

60

80

100

120

step time

Figure12.Delayassociatedwithastepinputstimulatingthesystemattime.

quantificationofthedelays.Thestudywasconductedbyisolatingvarioustypesofdisturbances.Thisallowedustoindividuallystudytheimpactofeachtypeofinputontheconvergenceofthefailureintensity.

References

[1]J.W.Cangussu,R.A.DeCarlo,andA.P.Mathur,

“Feedbackcontrolofthesoftwaretestprocessthroughmeasurementsofsoftwarereliability,”inProoced-ingofInternationalSymposiumonSoftwareReliabilityEngineering,(HongKong),pp.232–241,November2001.

[2]M.Donnely,B.Everrett,J.Musa,andG.Wilson,

HandbookofSoftwareReliabilityEngineering,M.R.Lyu,Editor,ch.“BestCurrentPracticeofSRE”,pp.219–254.NewYork:McGraw-Hill,1996.[3]J.W.Cangussu,R.A.DeCarlo,andA.P.Mathur,

“Aformalmodelforthesoftwaretestprocess,”IEEETransactiononSoftwareEngineering,vol.28,pp.782–796,August2002.[4]G.C.Goodwin,S.F.Graebe,andM.E.Salgado.,

Controlsystemdesign.UpperSaddleRiver,NewJer-sey:PrenticeHall,2001.[5]D.G.Luenberger,IntroductiontoDynamicSystems:

Theory,modelsandapplications.JohnWiley&Sons,1979.[6]R.A.DeCarlo,Linearsystems:Astatevariableap-proachwithnumericalimplementation.UpperSaddleRiver,NewYork:Prentice-Hall,1989.

605040yale30d2010000.10.20.30.40.50.60.70.80.91white noise frequencyFigure13.Delayassociatedwiththefre-quencyawhitenoiseoccursduringthetestprocess.

[7]F.Lanchester,“Aircraftinwarfare,thedawnofthe

fourtharm,”Constable,London,1916.[8]P.A.Samuelson,“Interactionsbetweenthemultiplier

analysisandtheprincipleofacceleration,”Rev.Eco-nomicStatistics,vol.21,pp.75–78,May1939.[9]J.Musa,SoftwareReliabilityEngineering.McGraw-Hill,1999.[10]A.P.Mathur,F.D.Frate,P.Garg,andA.Pasquini,

“Onthecorrelationbetweencodecoverageandsoft-warereliability,”inProceedingsoftheSixthInterna-tionalSymposiumonSoftwareReliabilityEngineer-ing,(Toulouse,France),pp.124–132,IEEEPress,Oc-tober24-271995.[11]B.W.Boehmandet.al.,SoftwareCostEstimation

withCocomoII.PrenticeHall,2000.[12]S.R.Lay,ConvexSetsandtheirApplications.New

York:JohnWiley&SonsInc.,1982.[13]L.Ljung,Systemidentification:Theoryfortheuser.

EnglewoodCliffs,NewJersey:Prentice-Hall,1987.[14]J.W.Cangussu,R.A.DeCarlo,andA.P.Mathur,

“Astatemodelforthesoftwaretestprocesswithau-tomatedparameteridentification,”inProceedingsofthe2001IEEESystems,Man,andCyberneticsCon-ference(SMC2001),(Tucson,Arizona),pp.706–711,October2001.

因篇幅问题不能全部显示,请点此查看更多更全内容