您的当前位置:首页中考数学应用题典型题解析

中考数学应用题典型题解析

2020-12-11 来源:飒榕旅游知识分享网


中考数学应用题典型题解析

1.(2009南宁)南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积xm2的函数关系如图12所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积xm2满足函数关系式:y乙kx. (1)根据图12写出甲工程队铺设广场砖的造价y甲(元)与铺设面积xm2的函数关系式; (2)如果狮山公园铺设广场砖的面积为1600m2,那么公园应选择哪个工程队施工更合算?

解:(1)当0≤x≤500时,设y甲k1x,把500,28000代入上式得:

28000500k1,k12800050056

y甲56x ·················································································································· 2分

28000、1000,48000代入上式得: 当x≥500时,设y甲k2xb,把500,500k2b28000··································································································· 3分 1000kb480002k240解得: ········································································································· 4分

b8000y甲40x8000

56x0≤x500···················································································· 5分 40x8000x≥500y甲(2)当x1600时,y甲401600800072000················································· 6分

y乙1600k ·············································································· 7分

①当y甲y乙时,即:720001600k

得:k45 ·················································································································· 8分

②当y甲y乙时,即:720001600k

得:0k45············································································································· 9分

③当y甲y乙时,即720001600k,k45

答:当k45时,选择甲工程队更合算,当0k45时,选择乙工程队更合算,当k45时,选择两个工程队的花费一样. ···············································································10分

y3

卫 2(09钦州)小王购买了一套经济适用房,他准备将地面铺上地

生 2砖,地面结构如图所示.根据图中的数据(单位:m),解答下列间 卧室 问题:

厨房 2(1)写出用含x、y的代数式表示的地面总面积;

(2)已知客厅面积比卫生间面积多21m2,且地面总面积是

2

卫生间面积的15倍,铺1m地砖的平均费用为80元,求铺地砖

x客厅 的总费用为多少元?

6

解:(1)地面总面积为:(6x+2y+18)m2; ······························································· 4分

(2)由题意,得6x2y21,6x2y18152y.······················································· 6分

x4,解之,得····················································································· 8分 3

y.2∴地面总面积为:6x+2y+18=6×4+2×∵铺1m地砖的平均费用为80元,

2

32+18=45(m2). ················ 9分

∴铺地砖的总费用为:45×80=3600(元). ············································10分

3(09湖南)为迎接“建国60周年”国庆,我市准备用灯饰美化红旗路,需采用A、B两

2种不同类型的灯笼200个,且B灯笼的个数是A灯笼的。

3(1)求A、B两种灯笼各需多少个? (2)已知A、B两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼需多少费用?

(1)设需A种灯笼x个,B种灯笼y个,根据题意得:

xy200, ·············································································································· 4分 2yx,3解得x120,y80;·············································································································· 6分

(2)120×40+80×60=9600(元). ·············································································· 8分 4(09定西)图(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙

角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm,求室内露出的墙的厚度a的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm,3≈1.73)

图1) 图(2)

解从图中可以看出,在室内厚为acm的墙面、宽

为4cm的门框及开成120°的门之间构成了一 个直角三角形,且其中有一个角为60°. ·········· 3分 从而 a=4×tan60° ·············································· 6分

=4×3≈6.9(cm).··································· 8分 即室内露出的墙的厚度约为6.9cm.

5(09河池)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.

(1)试销时该品种苹果的进货价是每千克多少元?

(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?

解:(1)设试销时这种苹果的进货价是每千克x元,依题意,得 ······························ (1分)

11000x0.55000x2 ·············································································· (5分)

解之,得 x5 ··················································································· (6分) 经检验,x5是原方程的解.······························································· (7分) (2)试销时进苹果的数量为:

500051000 (千克)

第二次进苹果的数量为:2×10002000(千克) ········································· (8分) 盈利为: 2600×7+400×7×0.7-5000-110004160(元) ······················ (9分) 答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.

··············································(10分)

6(09南宁)如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.

(1)用含x的式子表示横向甬道的面积;

(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;

(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元? .解:(1)横向甬道的面积为:

120180218x150xm12018022··········································· 2分  ·

(2)依题意:280x150x2x2整理得:x2155x7500

············································ 4分 80 ·

······································································ 6分 x15,x2150(不符合题意,舍去) ·

甬道的宽为5米.

(3)设建设花坛的总费用为y万元.

1201802··········································· 7分 y0.0280160x150x2x5.7x·

20.04x0.5x240

2当xb2a0.520.046.25时,y的值最小.··························································· 8分

因为根据设计的要求,甬道的宽不能超过6米,

当x6米时,总费用最少. ····················································································· 9分

最少费用为:0.04620.56240238.44万元···················································10分 7(09本溪)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,

要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.

(1)求购买每个笔记本和钢笔分别为多少元?

(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x0)支钢笔需要花y元,请你求出y与x的函数关系式; (3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.

解(1)解:设每个笔记本x元,每支钢笔y元. ························································· 1分

4x2y86,············································································································· 2分 3xy57.x14,解得

y15. ····································································································3分

····································································································4分

答:每个笔记本14元,每支钢笔15元.······································································ 5分

(2)y15x(0x≤10)12x30(x10)

·······························································6分 ·······························································7分

(3)当14x12x30时,x15;

当14x12x30时,x15;

当14x12x30时,x15. ···················································································· 8分 综上,当买超过10件但少于15件商品时,买笔记本省钱;

当买15件奖品时,买笔记本和钢笔一样; 当买奖品超过15件时,买钢笔省钱. ··········································································10分 8(09泉州)如图,等腰梯形花圃ABCD的底边AD靠

墙,另三边用长为40米的铁栏杆围成,设该花

圃的腰AB的长为x米. (1)请求出底边BC的长(用含x的代数式表示); (2)若∠BAD=60°, 该花圃的面积为S米2.

①求S与x之间的函数关系式(要指出自变

量x的取值范围),并求当S=933时x的值;

②如果墙长为24米,试问S有最大值还是最小值?这个值是多少?

解:(1)∵AB=CD=x米,∴BC=40-AB-CD=(40-2x)

„„„„„„„„„„„„„„„„„„„„(3分) (2)①如图,过点B、C分别作BE⊥AD于E,CF⊥AD于F,在Rt△ABE中,AB=x,∠BAE=60°

∴AE=

12x,BE=

32x.同理DF=

12x,CF=

32x

又EF=BC=40-2x ∴

AD=AE+EF+DF=

12x+40-2x+

12x=40-x„„„„„„„„„„„(4分)

12∴S==

(40-2x+40-x)·

343x20232x=

34x(80-3x)

x

3 (0

20)„„„„„„„„„„„„„(6分)

当S=933时,解得:x1=6,x2=2023343x2023=933

(舍去).∴x=6„„„„„„„„„„„„(8分)

②由题意,得40-x≤24,解得x≥16,

结合①得16≤x<20„„„„„„„„„„„„„„„„„„„„„„„„(9分)

由①,S=343x2023=343(x403)240033

∵a=334<0

∴函数图象为开口向下的抛物线的一段(附函数图象草图如左). 其对称轴为x=

403,∵16>

403,由左图可知,

当16≤x<20时,S随x的增大而减小„„„„„„„„„„„(11分) ∴当x=16时,S取得最大值,„„„„„„„„„„„„„„„(12分) 此时S最大值=343162203161283.„„„„„„„(13分)

得 分

评卷人

9(09衢州)水产公司有一种海产品共2 104千克,为寻求合适的销

售价格,进行了8天试销,试销情况如下:

售价x(元/千克) 销售量y(千克)

第1天 400 30

第2天

40

第3天 250 48

第4天 240

第5天 200 60

第6天 150 80

第7天 125 96

第8天 120 100

观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.

(1) 写出这个反比例函数的解析式,并补全表格;

(2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都

按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出? 解:(1) 函数解析式为y填表如下:

售价x(元/千克) 销售量y(千克)

第1天 400 30

第2天

第3天 250 48

第4天 240

第5天 200 60

第6天 150 80

第7天 125 96

第8天 120 100

12000x. „„2分

300

40

50

„„2分

(2) 2 104-(30+40+48+50+60+80+96+100)=1 600, 即8天试销后,余下的海产品还有1 600千克. 分

当x=150时,y12000150 „„1

=80. „„2分

„„1评卷人

1 600÷80=20,所以余下的这些海产品预计再用20天可以全部售出. 分

10(09衢州)2009年5月17日至21日,甲型H1N1流感在日本迅

速蔓延,每天的新增病例和累计确诊病例人

数如图所示.

(1) 在5月17日至5月21日这5天中,日

本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?

(2) 在5月17日至5月21日这5天中,日

得 分

日本2009年5月16日至5月21日

人数(人) 甲型H1N1流感疫情数据统计图 300 250 200 150 100 50 0 4 0 16

21 17 18

19

96 75 67 30 20

21 日期 74 新增病例人数 累计确诊病例人数 267 163 193 17

本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?

(3) 甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔

离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传....

染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?

解:(1) 18日新增甲型H1N1流感病例最多,增加了75人;

(2) 平均每天新增加

2674552.6人,

继续按这个平均数增加,到5月26日可达52.6×5+267=530人;

(3) 设每天传染中平均一个人传染了x个人,则

1xx(x1)9,(x1)29,

解得x2(x = -4舍去). 再经过5天的传染后,这个地区患甲型H1N1流感的人数为 (1+2)7

=2 187(或1+2+6+18+54+162+486+1 458=2 187), 即一共将会有2 187人患甲型H1N1流感.

„„4分 „„2分 „„2分

„„2分

„„2分

因篇幅问题不能全部显示,请点此查看更多更全内容