平面直角坐标系的用用很广,可以用坐标表示地理位置,也可以用坐标表示平移。
平面直角坐标系
在平面“二维”内画两条互相垂直,并且有公共原点的数轴。简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴(x-axis),取向右方向为正方向;纵轴为Y轴(y-axis),取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限(quadrant),右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
点的坐标
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标(coordinate)。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(ordered pair)(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。 (第一象限还可以写成Ⅰ,第二象限还可以写成Ⅱ, 第三象限还可以写成Ⅲ,第四象限也可以写成Ⅳ) 特殊位置的点的坐标的特点
1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
2.第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
3.在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反) 2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同) 3.关于原点成中心对称的'点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)
各象限内和坐标轴上的点的符号和坐标的规律 横坐标 纵坐标 第一象限:(+,+)正正 第二象限:(-,+)负正 第三象限:(-,-)负负 第四象限:(+,-)正负 x轴正半轴:(+,0) x轴负半轴:(-,0) y轴正半轴:(0,+) y轴负半轴: (0,-)
x轴上的点的纵坐标为0,y轴上的点的横坐标为0。 原点:(0,0)
注:以数对形式(x,y)表示的坐标系中的点(如2,-4),“2”是x轴坐标,“-4”是y轴坐标。
笛卡尔坐标的思想是法国数学家和哲学家笛卡尔创立的。
因篇幅问题不能全部显示,请点此查看更多更全内容