(一)激趣导入
1、教师:今天,老师要测试一下同学们的反应能力,你们准备好了
吗?请看大屏幕?(课件出示“单位转换”)
2、学生集体回答。(个别难题,教师引导计算,并且提问学生:你是怎么想的?注意学生的鼓励表扬)
3、创设情境
(1)师:今天我们班的两位同学产生了一场争论,你们想知道是怎么回事吗?
(2)学生情景表演。(师播放动画)
(3)通过刚才的观看,你们会支持哪一位同学呢?你有什么办法把操场画进本子吗?
生:按照一定的比例缩小。
(4)教师:你的想法很对,那你打算在本子上用多长的距离表示操场的长80米,用多长的距离表示操场的宽60米?
生1:用8厘米表示80米,用6厘米表示60米。(板书)
(5)其他同学认为他说的对吗?我们一起来表扬他。
4、师:现在,在我们的黑板上出现了两组量,这两组量中,哪组是我们画在图上的距离?(8厘米和6厘米)哪组是实际生活中的距离?(80米和60米)
5、小结:我们把画在图上的距离叫图上距离,把实际生活中的距离叫实际距离。(板书)
6、师:当我们用8厘米表示80米时,实际上把80米缩小了多少倍?(自由回答)我们一起来看看他们的比是多少?
(引导:比的前项和后项单位要统一,再划成最简整数比)
板书:8cm:80m=8cm:8000cm=1:1000
7、继续引导,并板书:6cm:60m=6cm:6000cm=1:1000
8、师:这里的1:1000说明我们用图上距离1cm表示了实际距离多少厘米?(1000厘米)
9、小结:像这种图上距离与实际距离的比,就叫比例尺。我们今天要学习的就是比例尺。(板书:比例尺)
(二)探索发现
1、揭示比例尺的意义。(课件播放)
教师补充板书:图上距离/实际距离=比例尺
公式转换:实际距离=图上距离÷比例尺
(板书) 图上距离=实际距离×比例尺
2、补充说明比例尺的特点:比的前项与后项单位要统一,并且是最简整数比。例如:1:100或1/100 说明用图上距离1cm表示实际距离100cm。
3、小组比赛,说一说:以上比例尺分别说明了什么意思?
举例:1:200说明用图上距离1cm表示实际距离200cm。
(分组回答)
4、师:仔细观察,这些比例尺有什么相同之处?
生:比例尺的前项都是“1”。
师:为什么要写成前项是“1”,而不写成前项是别的数字呢?
生:这样可以清楚的看出图上距离代表实际距离多少厘米。
师:真了不起,真是一针见血。
5、师:同学们现在看到的是老师的`房屋平面图,你能从看到哪些呢?(课件出示房屋图,生自由回答)
生1:父母卧室……
生2:比例尺1:100。
6、师:你观察真仔细!比例尺1:100是什么意思?
(学生讨论、汇报,教师引导)
学生1:图上 1厘米长的线段表示实际100厘米。
学生2:表示实际距离是图上距离的100倍。
7、运用知识,尝试解决问题:
教师:现在请大家量一量,图中我的卧室,长是( )厘米,宽是( 算一算我的卧室,实际的长是( )米,宽是( )米,面积是((生汇报,教师在课件上记录)
())平方米。)厘米。
8、说一说:你是怎么算的?(板书:黑板左侧)
生1:先量出卧室的长4厘米,实际长=4厘米×100=400厘米=4米
生2:再量出卧室的宽5厘米,实际宽=5厘米×100=500厘米=5米
生3:卧室的实际面积是5×4=20平方米
9、师:谁能算一算我家的总面积是多少?10×11=110平方米
(三)解决问题、巩固提高
1、师:我打算在父母卧室北墙正中开一扇宽为2米的窗户,在平面图上应该画多长距离呢?
2、引导计算
(1)题目中,2米是什么距离?(实际距离)比例尺是多少?(1:100)
(2)根据实际距离和比例尺,我们应该如何计算图上距离?
板书:2米=200厘米 200×1/100=2(厘米)
3、师:笑笑在本子上用8厘米表示了我的卧室的长,图上1厘米表示了实际距离多
少厘米?你是怎么算的?
板书:4米=400厘米 400÷8=50(厘米)
4、她画的平面图的比例尺是多少?(1:50)
5、(课件出示:北京到上海的情景)
师:题目中,已知哪些条件?(图上距离6厘米,比例尺1/17000000)
师:根据以上条件,北京到上海的实际距离是多少?
(生独立计算,集体回报)
(四)总结深化、拓展延伸
1、师:今天我们主要学习并认识了比例尺,知道图上距离与实际距离的比叫比例尺。今天所学的比例尺主要是把大的距离缩小,我们可以把它叫做缩小比例尺,为了计算方便,前项一般为1。但是有时我们也需要把一些小的东西放大,因此我们把这样的比例尺叫做放大比例尺,后项一般为1。
2、师:通过今天的学习,你们还学会了哪些?
因篇幅问题不能全部显示,请点此查看更多更全内容