您的当前位置:首页分数乘分数

分数乘分数

2021-05-24 来源:飒榕旅游知识分享网

  [片段一]

  师: 1/4×1/2你们能不能利用以前学过的知识计算出它的答案呢?

  生:能。

  师:请同学们听清要求,先独立思考,再与你的同桌交流你是怎么想的?

  生:(尝试计算答案,探究算理)

  师:(巡视,指导)

  师:许多组想出了很多办法,我们一起来交流一下。说说你们是怎么想的?(据学生汇报:化小数板书;折纸请他生再演示;汇报算式先放一放,最后请学生说说理由)

  组1: 1/4=0.25,1/2=0.5,所以0.25×0.5=0.125=1/8,我们认为答案是1/8。

  组2:可以把一张纸平均分成4份,再把其中的一份再平均分成2份取其中的一份,这样一共把这张纸平均分成了8份,取了其中的一份,所以是1/8。

  (师:这种方法你听懂了吗?这个8是怎么来的?

  组3:按他的想法来说,是折出来的,先平均分成4份,再把其中的一份再平均分成2份,实际上是把这长方形分成了8份。)

  组4:(边说边画):我们用的是线段的方法,画一条线段作为单位1,把它平均分成4份,取其中一份,再把这一份平均分成2份取一份,就是把这条线段平均分成了8份,取了其中的一份。

  ……

  师:以1/4×1/2=1×1/4×2=1/8为例,你为什么能用4×2呢?(课件呈现)

  [片段二]

  师:像1/4×1/2,大家想出了很多办法,如果工作1/3小时可以铺设这块地面的几分之几?3/4小时呢?现在你能不能解决了?谁来汇报算式?(课件呈现)。

  师:听清要求,我们分工一下,1、2组研究第一个算式,3、4组研究第二个算式,用你喜欢的方法独立思考一下。

  生:选择探究算理及其结果。

  师:巡视,指导。

  师:许多组想出了很多办法,我们一起来交流一下。我们先请选择第一个问题的同学汇报:说说你们是怎么想的?

  生:汇报。

  师:这题你们为什么没有化小数去解决。

  生:不能化有限小数。

  师:所以化小数去解决是不是对所有的分数乘分数都适用呢?(生:不能)所以化小数去解决分数乘分数有一定的局限性。

  师:我们再请解决第二个问题的同学汇报:说说你们是怎么想的?

  ……

  [片段三]

  师:从刚才的推算中,我们已经得出了1/4×1/2=1/8、1/4×1/3=1/12、1/4×3/4=3/16,是不是我们以后遇到这样的题目都需要这样推算呢?(生:不是)

  师:那请你们仔细观察一下,分数乘分数我们应该怎样计算呢?

  同桌讨论,汇报:

  (板书)分数乘分数,用分子相乘的积做积的分子,分母相乘的积做积的分母。

  [反思]

  1.“猜想——验证——归纳”的探究思路是否需要?

  在本节课的试教中,我采用了“猜想——验证——归纳”的探究思路来进行教学。在课堂中,我发现学生猜测1/4×1/2,他们猜测的结果都是1/8。在验证环节学生纯粹停留在如何得出算式结果上,导致学生的思路大大受到限制。而在第二次教学时。我采用了“计算——汇报方法——归纳”的思路进行教学。我发现学生在课堂中更为积极主动,学生在汇报方法时也体现了层次性。学生群体一:单纯从如何得出答案入手,但正所谓“知其然而不知其所以然”;学生群体二:能初步从自己的探究中知道应该怎样算。

  综上所述,“猜想——验证——归纳”的探究思路的确在数学教学中起了相当大的作用,但对于部分内容的探究还是不适合的。

  2.教师该如何从学生的发言中抓准本质?

  课堂活跃了,学生发言就大胆了,自然而然课堂上各种不可预设的回答就出现了。作为教师要善于调控课堂节奏、善于引导(归纳)学生发言,这样才不至于让有价值的问题流失,不至于让课堂上学生的回答变的无人理睬。

  如:我在试教中,学生汇报了1/4×1/2=(1÷4)×(1÷2)=1÷8=1/8,我一开始并没有理解这位同学的这样做的理由。我马上问:“有谁明白这样做的理由吗?”为自己尽量争取尽可能多的时间。当然,即使我明白这样做的理由,也应让学生多思考、多说说,这样才能有效的培养学生的参与度。

  综上所述,我觉得善于从学生的发言中抓准本质不是一朝一夕就能形成,它必须从自身漫长的经历中去体验、感悟才能变得收放自如。

因篇幅问题不能全部显示,请点此查看更多更全内容