您的当前位置:首页《圆柱的体积》练习设计

《圆柱的体积》练习设计

2023-10-15 来源:飒榕旅游知识分享网

  教学目标:

  1、使学生能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题。

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:掌握圆柱体积的计算公式。

  教学难点:灵活应用圆柱的体积公式解决实际问题。

  教学过程:

  一、自学反馈

  一根圆柱形木料,底面半径是6分米,长12分米。它的体积是多少?    

  1、学生独立解答,教师巡视指导。

  2、汇报交流:3.146212=1356.48(立方分米)

  3、你是怎样算圆柱的体积的?

  圆柱的体积=底面积高,即v=sh。

  二、关键点拨  

  1、要求圆柱的体积必须知道什么条件?

  (1)底面积和高;

  (2)底面半径和高;

  (3)底面直径和高;

  (4)底面周长和高。

  2、如果知道底面半径和高,怎样求圆柱的体积?

  v柱=圆周率半径的平方高。

  3、如果知道底面直径和高,怎样求圆柱的体积?

  v柱=圆周率(直径÷2)的平方高。

  4、如果知道圆柱的底面周长和高,怎样求体积?

  v柱=圆周率(周长÷圆周率÷2)的平方高。

  5、如果知道圆柱的体积和底面积,怎样求高?     

  圆柱的高=圆柱的体积÷底面积

  三、解决实际问题

  1、一个圆柱形水桶,底面直径是4分米,高80厘米,桶中水面高60厘米。桶中装了多少升水?

  (1)学生独立解答并反馈交流。

  (2)追问:如果往桶中放入一块小石头,水面上升到70厘米。则石头的体积是多少立方厘米?

  2、练习三第5题。

  (1)指导学生变换公式:因为v=sh,所以h=v÷s。也可以列方程解答。

  (2)学生选择喜爱的方法解答这道题目。

  3、练习三第7题。

  (1)学生思考:要求粮囤所能装的玉米的重量,需先知道什么?

  (2)然后独立完成。

  4、练习三第8题。

  (1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

  (2)在充分理解题意后学生独立完成,集体订正。

  5、练习三第9、10题

  (1)学生独立审题,完成9、10两题。

  (2)第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式v=sh)

  (3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。

  6、学生尝试完成练习三第11题:求空心圆柱钢材的体积。 外圆直径10厘米,内圆直径8厘米,长80厘米。     

  四、总结

  这节课,你有什么收获

因篇幅问题不能全部显示,请点此查看更多更全内容