您的当前位置:首页《圆柱的体积》练习设计

《圆柱的体积》练习设计

2024-01-15 来源:飒榕旅游知识分享网

  教学目标:让学生在了解圆柱的基础上,通过联想迁移、观察演示等活动推导出圆柱体积的计算公式,并能正确应用公式进行相关的计算;培养学生的观察、比较、分析、综合的能力,发散思维能力以及初步的空间想象能力;向学生渗透知识间“相互转化”的辩证唯物主义思想。

  教具准备:圆柱体积演示教具,多媒体课件等。

  教学过程:

  一、铺垫复习。

  同学们,我们已经认识了圆柱,也学习了圆柱侧面积和表面积的计算,你能用简洁的语言表述一下你对圆柱的了解吗?(抽3—5人口述)

  生:…………

  师:刚才几位同学已经把我们对圆柱的认识、了解作了介绍。那么你们还想不想对圆柱了解更多呢?你们还想了解圆柱的那些知识呢?

  生:……我们还想了解圆柱的体积如何计算?……

  师:那好,今天我们就来研究圆柱的体积。板书:圆柱的体积

  在学习圆柱的体积以前,请你猜一猜:圆柱的体积可以怎样计算?有没有不同的计算方法?

  生:圆柱的体积=底面积高……

  师:你能说一说你为什么这样想吗?

  生:因为长方体和正方体的体积都用底面积乘高来计算。

  师:说得好,那么究竟圆柱的体积是不是用底面积乘高来计算呢?下面我们就来研究这个问题。

  不过在研究之前,先请同学们回忆一下圆的面积计算公式是怎样的?圆的面积计算公式是怎样推导出来的?

  生甲:圆的面积计算公式是s=πr2,这个公式是这样推导出来的:将圆沿着直径剪成若干个扇形,然后将这些扇形重新拼成一个近似长方形的图形(分的份数越多,拼成的图形越接近于长方形),这个近似长方形的长等于圆的周长的一半即πr,宽等于圆的半径r。因为长方形的面积=长宽,所以圆的面积s=πrr=πr2。

  生乙、丙:口叙圆面积推导过程。

  师:好,现在我们就来研究圆柱的体积计算。

  [简评]由复习原学知识作铺垫,自然引入本课时研究的内容,即融汇了新旧知识的联系,又有助于学生更好地理解本课时新知。

  二、教学新课。

  1、推导圆柱体积计算公式。

  师(出示圆柱体教具):我这儿有一个圆柱体,我想知道这个圆柱体的体积有多大,有什么办法?

  学生发表自己的意见。

  师:刚才同学们发表了自己的意见,虽然各人说法不完全相同,但有一点是相同的,这就是:想办法将圆柱体转换成我们能求体积的形体(长方体)。那么怎样转换呢?

  生:将圆柱体先切成若干块,然后再重新拼成长方体。

  师:怎样切,怎样拼?

  生:沿底面直径切开,然后再拼起来。

  生:(学生多人发表意见)…………

  生:沿圆柱的底面直径切开,使切面与底面垂直。这样切分成若干个底面是扇形的立体图形,再将这些切分下来的每一块重新拼在一起,就可以拼成一个近似长方体的立体图形。(学生在说的同时用教具将切、拼的过程演示给全班同学看)

  师:刚才这位同学演示得很好。现在让老师再来给同学们演示一下(突出分的份数多与少对拼成的近似长方体形状的影响)。你发现了什么?

  生:分的份数越多,拼成的形体越接近于长方体。

  师:如果我们分成成百上千份,甚至更多,再拼起来,你想象一下它的形状会怎么样?

  生:就是长方体。

  师:这个圆柱体的体积和拼成的长方体的体积有什么关系?

  生:相等。

  师:(再用教具演示切、拼的过程,让学生注意观察)你还发现了什么?

  生:圆柱的底面积等于拼成的长方体的底面积。

  生:圆柱的高等于拼成的长方体的高。

  (多媒体演示)将圆柱切拼成一个长方体,突出强调圆柱的底面积与长方体底面积的关系,圆柱的高与长方体高的关系以及圆柱体体积与长方体体积的关系。

  引导学生口叙圆柱转化成长方体,以及其底面积、高和体积的关系。

  师:谁来完整地叙述一下刚才多媒体演示的过程?

  生:将圆柱体切拼成一个长方体,这个长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积等于圆柱的体积。因为长方体的体积等于底面积乘高,所以圆柱的体积也等于底面积乘高。

  师:如何用字母表示圆柱的体积计算公式呢?

  生:用字母v表示体积,s底表示底面积,h表示高,则圆柱的体积计算公式表示为:v =  s底  h = s底h

  (学生分组,相互口述以上转化及圆柱体积计算公式得出的过程)

  (学生分组口述以后,再请学生说一说圆柱体积计算公式的推导过程)

  教师板书:

  圆柱体     (拼成的)长方体

  底面积    =      底面积

  高      =        高

  体积     =       体积

  因为  长方体的体积=底面积高

  所以  圆柱的体积=底面积高     

  用字母表示为:v =  s底  h = s底h

  [简评]强化了学生的参与,放手让学生去感知、去体验;重视学生的口头表述,利于学生在知识的形成过程中掌握知识、形成技能,同时也强化了学生记忆。

  2、指导学生阅读教材,进一步理解圆柱体积的计算公式。

  先由学生阅读教材,教师巡视。

  师:对于圆柱体的体积计算,同学们还有什么问题吗?

  生:没有。

  师:好,那圆柱的体积计算与那些条件有关?如果没有直接告诉圆柱的底面积,而是告诉其底面的周长(或半径、直径)以及圆柱的高,你能计算它的体积吗?如何计算?

  生:根据圆柱的底面周长(或半径、直径),可以先算出圆柱的底面积,再根据圆柱的底面积和高求圆柱的体积。

  生:根据圆柱的底面周长(或半径、直径),求圆柱底面积的方法是……

  师:完全正确,那我们现在就来计算圆柱的体积。

  [简评]充分利用教材资源,利于学生能力的形成,并加深学生对知识的理解掌握。

  3、应用体积计算公式计算。

  求下列各圆柱体的体积:

  (1)底面积是9平方分米,高是8分米;      (2)底面半径3厘米,高4厘米;

  (3)底面直径8米,高3米;                (4)底面周长18.84厘米,高6厘米;

  (5)底面积15平方米,高30分米;          (6)侧面积10平方米,底面半径5米。

  以上各题的练习,一方面检查学生对圆柱体积公式的理解掌握情况,另一方面也考察学生的读题审题能力,如第(5)题涉及的计量单位换算,同时也给学生提出新的问题,如第(6)题的计算。

  待多数学生进入第(6)题的计算时,抽学生6人将自己的解答板书在黑板上。

  师生一同订正以上练习。

  [简评]及时练习,强化学生对新知的印象,利于学生掌握新知。

  4、求异探讨训练。

  师:看来前5个小题的计算情况还好,绝大多数的同学能正确列式并计算正确,这很好。看来同学们对圆柱的体积计算公式的确掌握得较好。但在计算第6题时,很多人都遇到了麻烦,为什么呢?

  生:因为根据侧面积和底面半径计算高非常麻烦,结果要么只能用分数表示,要么只能取近似值。

  生:其实如果不算出高的具体结果,而用一个式子表示高,倒也不麻烦,但写出来的式子比较繁。

  师:那么有没有简单可行的办法呢?

  生:……

  师:同学们可以分小组讨论一下。

  (学生讨论)

  师:通过讨论,你们想到了什么简单可行的办法?

  生:我们从计算公式的转换上找到了圆柱体积计算的另一个公式,这就是:v=s侧r。

  师:不错,那你们能不能把公式转换的过程给同学们介绍一下呢?

  生:行。(该小组的同学相互补充完整)由于圆柱的体积v = s底h,而s底=πr2,所以v =πr2h=πr hr,又由于πr h=πdh=s侧,于是得到v=s侧r。

  师:同学们认为刚才这个组的同学说得怎么样?

因篇幅问题不能全部显示,请点此查看更多更全内容