教学内容:教科书第44—45页
教学目标:
1、结合生活经验和直观图示,理解一个数乘分数的意义,探索分数乘分数的计算方法。
2、通过操作、观察,培养学生初步分析、推理的能力。
3、经历分数乘分数的意义和计算方法的探索过程,渗透数形结合思想,获得成功的学习体验。
教学重点:
一个数乘分数的意义和计算方法
教学难点:
理解分数乘分数计算的算理
教学过程:
一、创设情境,提出问题:
师:在学校举行的“小手艺展示”活动中,王芳同学获得了“编织能手”的称号。她每小时能织1/4米长的围巾,根据这一信息,你能提出什么数学问题?(板书:每小时能织1/4米)
学生自主提出问题,师根据本节课所需选择性地板书。
2小时能织多少米?
1/2小时能织多少米?
2/3小时能织多少米?
[学生如果提出的时间较大时教师就顺势改成2小时;如果学生提出其它问题,教师就说老师来提一个,将问题引过来]
师:要求2小时、1/2小时、2/3小时织多少米?该怎样形式?为什么?
引导学生根据“工作效率×工作时间=工作总量”的关系列式。
[学生可能列出:1/4×2、1/4×1/2、1/4×2/3]
师:同学们真棒,不但自己提出了问题,还会根据“每小时织的米数×织的时间=织的总米数”这个数量关系来列式,这节课我们就先来研究这三道题。
二、探究研讨,学习新知:
教学分数乘分数的意义。
1、教学1/4×2:
(1)师:先来看1/4×2,它表示什么意思?
生可能说:
1/4的2倍是多少?
2个1/4是多少?
(2)师:求2小时能织多少米,就是求1/4米的2倍是多少?你能通过画图或用纸条表示出它的意思吗?
学生操作,抽生前台展示。
[学生如果不能准确地表示,教师再引导说明。]
[师:怎样表示1/4米呢?假设用这个纸条表示1米,1/4米就是把它平均分成4份,取其中的1份,用阴影表示,这就是1小时织的,2小时织的呢?让学生表示两份。]
2、教学1/4×1/2:
(1)师:1/4×1/2表示什么意思,谁有想法?
(2)学生交流:
[可能出现:
生1:1/4的1/2倍是多少?师解释:我们通常所说的倍数一般都是2倍、3倍……而1/2比1小,不够1倍,所以我们一般不这么说。
生2:1/2个1/4是多少?师引导:1/2比1小,不够1个一个呀!]
师:这两位同学非常棒,都是运用迁移的方法根据1/4×2的意义来说的,那么到底表示什么意思,我们可以画图或折纸来分析一下,同学们自己动手试一试行吗?
(3)学生动手操作。
(4)学生交流。
[对于出现的几种情况,只要解释正确教师就预以肯定。]
师:刚才同学们解释的意思大家都明白,但如果不解释,是不是就有点看不明白了,关键是大家没有首先清楚地表示出1/4米,我们一起来画一画。
师再示范一次操作的过程。
3、教学1/4×2/3:
(1)1/4×2/3表示什么意思?
(2)生交流:表示1/4的2/3是多少?师:是不是这样,我们再画图来验证一下。
(3)学生交流。
4、小结:
刚才我们研究的这两道题就是我们今天要研究的内容:一个数乘分数。通过刚才的操作,谁来说说一个数乘分数的意义是什么?
学生交流。师生概括:一个数乘分数,可以看作是求这数的几分之几是多少。
[板书:求这个数的几分之几是多少?]
5、练习:
下面的算式表示什么?(算式在大屏幕上出现)
1/3×1/3,1/4×2/5,3/4×1/5,3/4×2/9
探索分数乘分数的计算方法。
1、师:同学们对意义理解的很好,那么1/4×1/2和1/4×2/3的结果是多少?
学生交流。
师:想一想,积的分子、分母与两个因数的分子、分母有什么关系?在小组内说一说。
学生交流:得出:两个分数相乘,积的分子是两个因数分子相乘的积,分母是两个因数的分母相乘的积。
[学生交流时,师结合示意图,详细讲解分数乘分数积的分子和分母乘出的过程。]
2、师:应用刚才的发现,计算1/4×1/2,1/4×2/3。
学生独立计算。
订正时注意让学生了解有不同的约分方法,可让学生自己选择。
强调:能约分的要先约分,再计算。
总结分数乘分数的计算方法。
师:王芳8/15小时织了多少米?怎样列式?这个算式表示什么意义?请大家独立计算。
因篇幅问题不能全部显示,请点此查看更多更全内容