您的当前位置:首页The Impact of BGP Dynamics on Intra-Domain Traffic

The Impact of BGP Dynamics on Intra-Domain Traffic

2020-05-10 来源:飒榕旅游知识分享网
SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER20031

TheImpactofBGPDynamicsonIntra-Domain

Traffic

SharadAgarwal

Chen-NeeChuah

CSDivision,

ECEDepartment,UniversityofCalifornia,Berkeley

UniversityofCalifornia,Davissagarwal@cs.berkeley.edu

chuah@ece.ucdavis.edu

Abstract—

Recentworkinnetworktrafficmatrixestimationhasfocusedongen-eratingrouter-to-routerorPoP-to-PoP(Point-of-Presence)trafficmatriceswithinanISPbackbonefromnetworklinkloaddata.However,theseesti-mationtechniqueshavenotconsideredtheimpactofinter-domainroutingchangesinBGP(BorderGatewayProtocol).BGProutingchangeshavethepotentialtointroducesignificanterrorsinestimatedtrafficmatricesbycausingtrafficshiftsbetweenegressroutersorPoPswithinasingleback-bonenetwork.WepresentamethodologytocorrelateBGProutingtablechangeswithpackettracesinordertoanalyzehowBGPdynamicsaffecttrafficfan-outwithintheSprintIPnetwork.Despiteanaverageof133BGProutingupdatesperminute,wefindthatBGProutingchangesdonotcausemorethan0.03%ofingresstraffictoshiftbetweenegressPoPs.Thislimitedimpactismostlyduetotherelativestabilityofnetworkprefixesthatreceivethemajorityoftraffic–0.05%ofBGProutingtablechangesaffectintra-domainroutesforprefixesthatcarry80%ofthetraffic.ThusourworkvalidatesanimportantassumptionunderlyingexistingtechniquesfortrafficmatrixestimationinlargeIPnetworks.

I.INTRODUCTION

TheInternetisaninterconnectionofseparatelyadministerednetworkscalledAutonomousSystemsorASes.EachASisaclosednetworkofendhosts,routersandlinks,typicallyrunninganintra-domainroutingprotocolorIGP(InteriorGatewayPro-tocol)suchasIS-IS(IntermediateSystemtoIntermediateSys-tem)[1]orOSPF(OpenShortestPathFirst)[2].TheIGPdeter-mineshowanetworkentity(endhostorrouter)insidetheASreachesanothernetworkentityinthesameASviaintermediatehops.ToreachentitiesoutsidetheAS,theinter-domainrout-ingprotocolorEGP(ExteriorGatewayProtocol)usedtodayistheBorderGatewayProtocolorBGP[3].EachASannouncesaggregateinformationfortheentitiesinitsnetworkviaBGPtoneighboringASes.Thisisintheformofaroutingannounce-mentorroutingupdateforoneormorenetworkprefixes.AnetworkprefixisarepresentationofasetofIPaddresses,suchas128.32.0.0/16foreveryaddressintherangeof128.32.0.0to128.32.255.255.ThroughthepathvectoroperationofBGP,otherASesfindouthowtoreachtheseaddresses.

ApacketthatissentfromanASXtoanIPaddressinadiffer-entASZwilltraverseaseriesoflinksdeterminedbymultipleroutingprotocols.Firstly,theIGPinsideASXwilldeterminehowtosendthepackettothenearestborderrouter.TheborderrouterinsideASXwilldeterminetheinter-ASpathviaBGP,suchas“ASX,ASY,ASZ”.ThepacketwillthenbesenttoASY.ASYwilluseBGPtodeterminethatthenextASisASZ.ASYwilluseitsIGPtosendthepacketacrossitsnetworktotheappropriateborderroutertosendittoASZ.ASZwillthen

ThisworkwasdonewhiletheauthorswereatSprintAdvancedTechnologyLaboratories.

SupratikBhattacharyya

ChristopheDiot

SprintATL,IntelResearch,Burlingame,CA,USACambridge,UKsupratik@sprintlabs.com

christophe.diot@intel.com

useitsIGPtosendittothedestinationinsideitsnetwork.

NetworktrafficengineeringtasksarecriticaltotheoperationofindividualASes.Thesetaskstuneanoperationalnetworkforperformanceoptimization,andincludetrafficloadbalancing,linkprovisioningandimplementinglinkfail-overstrategies.Forexample,loadbalancingtypicallyminimizesover-utilizationofcapacityonsomelinkswhenothercapacityisavailableinthenetwork.Inordertoeffectivelytrafficengineeranetwork,atrafficmatrixisrequired.Atrafficmatrixrepresentsthevolumeoftrafficthatflowsbetweenallpairsofsourcesanddestina-tionsinsideanAS.However,duetoavarietyofreasonsinclud-inglimitednetworksoftwareandhardwarecapabilities,detailednetworktrafficinformationisoftenunavailabletobuildatrafficmatrix.Thusavarietyoftechniqueshavebeendeveloped[4],[5],[6],[7]toestimatethetrafficmatrixfrommoreeasilyob-tainablenetworklinkloadmeasurements.However,variationsinBGProuteshavethepotentialtoaddsignificantvariabilitytothetrafficmatrix,whichthepriorworkhasnotconsidered.Ithasbeenapproximately15yearssinceBGPwasdeployedontheInternet.ThenumberofASesparticipatinginBGPhasgrowntoover15,000today.Thisgrowthhasbeensuper-linearduringthepastfewyears[8].WiththissuddengrowththerehasbeenconcernintheresearchcommunityabouthowwellBGPisscaling.Inparticular,ithasbeennotedthatthereissignif-icantgrowthinthevolumeofBGProuteannouncements(orrouteflapping)[9]andinthenumberofBGProuteentriesintheroutersofvariousASes[8].Thishasthepotentialtosignifi-cantlyimpactpacketforwardingintheInternet.

Iftheinter-domainpathforreachingaparticulardestinationkeepschanging,thenpacketswilltraverseadifferentsetofASesaftereachchange.Further,foranintermediateASthatpeerswithmultipleASesatdifferentborderroutersinitsnetwork,changesintheinter-domainpathwillcausepacketstotraversedifferentpathsinsideitsnetworktodifferentborderrouters.ThishasseveralimplicationsfortheintermediateAS.PacketdeliverytimesorlatencywithinthatAScanvarysincethepathsinsideitsnetworkkeepchanging.Latencysensitiveapplicationssuchasvoice-over-IPcanbeadverselyaffected.Iftheintra-domainpathsvary,thenthetrafficdemandsfordifferentlinksinthenetworkwillvary.Thisvariabilityinturnwillimpactthetrafficmatrixandmakeit’sestimationmoredifficult.

Inthispaper,weanswerthequestion“DoBGProutingta-blechangesaffecthowtraffictraversestheSprintIPnetwork?”.Sprintmaintainsa“tier-1”ISPthatconnectstoover2,000otherASes.AsignificantpercentageofInternettraffictransitsthisnetwork.Forthesereasons,webelievethatitisasuitablepoint

SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER2003forstudyingtheimpactofBGPontrafficinsideanAS.Weex-amineBGPdatafrommultipleroutersinthenetwork.Wecorre-latethiswithpackettracescollectedonseveraldifferentdaysatdifferentlocationsinsideSprint.Thecontributionsofourworkare:

•routeWeannouncementsdevelopamethodologyontrafficforinsideanalyzinganAS.theItseparatesimpactofinher-BGPenttrafficdynamicssuchastime-of-dayeffectsfromegressPoPshiftsduetoBGProutingchanges.

•fromWeanpresentoperationalresultsnetworkfromthewithcorrelationiBGPdata.ofWecapturedfindthatpacketsasig-nificantnumberofroutingchangescontinuouslyoccur.How-ever,forthelinksthatwemeasure,weexperimentallyconcludethatthesechangesdonotsignificantlyimpactthepathsofmostpackets.Priorwork[10]hasfoundthatonlyasmallnumberofBGPannouncementsaffectmostofthetraffic.However,evenafewBGPchangescanpotentiallysignificantlyimpactmostofthetraffic.WeaddresswhatimpactthesefewBGPannounce-mentshavewithinSprint.

Thepaperisorganizedasfollows.WebeginwithrelatedworkinSectionIIfollowedbySectionIIIthatexplainstheprob-lemweaddressinthiswork.WeexplainourmethodologyfortacklingthisprobleminSectionIV.WedescribethedatausedinSectionVandpresentourresultsinSectionVI.InSectionVII,weanalyzetheroutingdataandpackettracesfurthertojustifyourfindings.WeendwithconclusionsinSectionVIII.

II.RELATEDWORK

Duetothedifficultyincollectingdetaileddataforalltraf-ficinalargenetwork,statisticalinferencetechniqueshavebeendeveloped[4],[5],[6],[7]toobtaintrafficmatrices.Thesetech-niquesattempttoinferthebytecountsfororigin-destinationpairswithinanetworkbasedonlinkbytecounts.Thetrafficmatrixthatisestimatedisonewheretheoriginsanddestinationsareroutersinsidethelocalnetwork.Inreality,forISPnetworks,mostoftheoriginsanddestinationsareendhostsoutsidethelo-calnetwork.Thusinter-domainroutechangesbetweentheendhostscanchangetheoriginanddestinationroutersinsidethelocalnetwork.Thishasthepotentialtoreducetheaccuracyofthesetechniquesandtherebyimpactthetrafficengineeringtasksbasedontheestimatedtrafficmatrices.Zhangetal.[7]identifythisproblembutassumeittobenegligiblebasedontheirexpe-rienceintheproposedgeneralizedgravitymodel.WecorrelateBGPdatawithtrafficmeasurementstoquantifythiseffect.Muchofthepriorworkininter-domainroutinghasbeeninanalyzingaggregatestatisticsofeBGP(externalBGP)tablesandupdates.Toourknowledge,littlepriorworkhasfocusedoniBGP(internalBGP)behavior.Also,westudyiBGPdynam-icsonthepacketforwardingpathinanoperational“Tier-1”ISP,insteadofpriorworkthatstudiedrelatedissuesthroughsim-ulationsorcontrolledexperiments.Weareawareofonlytwostudies[11],[10]thathavecorrelatedtrafficmeasurementswithBGPdatafromanoperationalnetwork.

UhligandBonaventure[11]usesixsuccessivedaysoftraf-ficmeasurementsandasinglesnapshotofaBGProutingtabletostudythedistributionandstabilityoftraffic.TheyfindthattrafficisnotevenlydistributedacrossASesintermsofhopdis-tancefromthemeasurementpoint.Theyshowthatunder10%

2

ofASessentabout90%ofthetraffic.ThelargestASesintermsoftrafficcontributionremainedthelargestfromdaytoday.Rexfordetal.[10],theauthorsassociatethenumberofBGPupdateswithtrafficbehaviorinAT&T’snetwork.TheyfindthatasmallnumberofprefixesreceivemostoftheBGPupdatesandthatmosttraffictravelstoasmallnumberofprefixes.TheyfindthattheprefixesthatcarrymostofthetrafficdonotreceivemanyBGPupdates.Theseresultsmightleadonetoconjec-turethatBGProutingupdatesdonotcausesignificanttrafficshifts.However,eveniftheprefixesthatcarrymostofthetraf-ficreceivefewBGPupdates,thesefewupdatescanstillcausesignificantegressborderrouterchanges.TheseresultsdonotspecificallydemonstratetheextenttowhichBGPupdatescauseshiftsinintra-domaintrafficbecausethenumberofupdatesit-selfisnotsufficienttounderstandthisissue.EveryBGPan-nouncementcanpotentiallychangetheattributethatdeterminestheegressborderrouter.ThusthenumberofBGPupdatesdoesnotdirectlytranslateintotheamountoftrafficthatshifts.Inourwork,wedevelopanentirelydifferentmethodologythanusedbyRexfordetal.[10].WeperformathoroughstudyofhowBGPupdatescanaffecttheintra-domaintrafficmatrix.WegobeyondcountingthenumberofBGPmessagesassociatedwithpopularprefixestoactuallyaccountingforhoweverypacketisaffectedbyeveryBGPchange.Wemeasuretheimpactintermsoftrafficvariabilityinbackbonelinksandquantifyvolumesoftrafficshifts.Wefindthatforsometraffic,afewBGPupdatesdochangetheegressrouteraddressandcausethetraffictoshiftbetweenintra-domainpaths.However,mostofthetrafficisun-affected.Thetrafficwemeasurecontainslargeflowsthatre-ceiveBGPupdatescarryingfeweregressrouterchangesthanthoseforotherflows,whichwasnotexploredinthepriorwork.

III.PROBLEMDESCRIPTION

BGPisapathvectorroutingprotocolthatexchangesroutesforIPaddressrangesorprefixes.Eachrouteannouncementhasvariouscomponents,suchasthelistofprefixesbeingwith-drawn,ortheprefixbeingadded,theASpathtobefollowedinreachingtheprefix,andtheaddressofthenextrouteralongthepath.EveryASthatreceivesarouteannouncementwillfirstapplyitsimportpolicies[3]andthenBGP“best”routeselec-tion,whichtakesintoconsiderationpreferenceslocaltotheAS,theASpathlength,andthebestIGPpathtotheborderrouter,amongothers.Iftherouteisselected,thenithasthepotentialtobepassedontootherneighboringASes.Exportrulesorpoli-ciesdeterminewhichASmayreceivethisannouncement.ThecurrentASwillbeaddedtotheASpathandthenexthoprouterwillbechangedtooneofthisAS’sborderrouters.

ManyASesconnectviaBGPtomultipleupstreamASesorISPs,andevenatmultiplepointstothesameISP.Thistrend,knownasmultihoming,hasbecomeverypopularoverthepastfewyears,asindicatedbythetremendousgrowthinBGPpar-ticipation[12].Asaresult,anintermediateASmayreceivemultipleroutesinBGPforthesamedestinationaddressprefix.ThismaycausetheintermediateAStokeepchangingtherouteitusestoreachthisdestination.Thiscanoccurduetomanyrea-sons.EachASalongapathapplieslocalpoliciesinacceptingsomeroutesandnotothers.BGProuteselectionisusedtopickthe“best”oftheremainingroutesvia13steps[13].Infact,each

SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER2003TrafficPoP 10󰀀fficTraSprint Network󰀀PoP 20󰀀ciffarTBGP UpdatePoP 30󰀀Customer󰀀Fig.1.Intra-domainrouteandtrafficthroughtheSprintnetwork

ASmayhavemultipleBGProutersconnectedviainternalBGPoriBGP[3],anddifferentpartsoftheASmaybeusingdiffer-entroutestoreachthesamedestination.TheconcatenationofsuchroutepolicyandselectionrulesacrossmultipleroutersineachofmultipleASesalongaparticularASpathtoadestina-tionleadstoaverycomplexroutingsystem[14].Anyportionofthissystemcancontributetoroutechangeswhenfacedwithmultiplechoicestoreachadestination.Rapidchangescanmakeroutingforadestinationprefixunstable[15].Inaddition,rapidchangescanalsosignificantlyimpacttrafficpatternswithinanAS.

TheSprintnetworkconnectstomultipleotherASes,inmul-tiplegeographicallydistinctlocationscalledPoPsorPointsofPresence(alsoknownasswitchingcenters).SuchanISPhasalargeandcomplexnetworkofroutersandlinkstointer-connectthesePoPs.Further,eachPoPisacollectionofroutersandlinksthatprovideconnectivitytocustomerASesorpeerASesinalargemetropolitanarea.RouterswithinandacrossPoPsuseiBGPtodistributeBGProutes.iBGPistypicallyusedinnet-workswithmultipleroutersthatconnecttomultipleASes.ItmaynotbepossibletodistributetheBGProutingtableinIGPinascalablefashiontoallrouterswithinlargeASes[3].ThusiBGPisusedtoexchangeBGProutesamongtheseroutersandIGPisusedtoexchangeroutesforlocaladdresseswithintheAS.AnASnetworkmaybedesignedunderseveralconstraintssuchastheaveragelatencyorjitterinsidethenetwork.Thus,theISPwillhaveto“engineer”itsnetworktoensurethatlossanddelayguaranteesaremet.ThetaskoftrafficengineeringmayincludesettingIS-ISorOSPFlinkweightssothattraffictravelsalongtheshortestpathsintheAS’snetworkandcongestionislimited.Overtime,thetrafficexchangedwiththeseneighbor-ingASesmaychange.Asaresult,thelinkweightswillhavetobeupdated.Furthermore,thetrafficexchangedwiththeseASesmaygrowandmorecustomerASesmayconnecttotheISP.Asaresult,morelinkswillhavetobe“provisioned”intothenet-work.Thesetasksareusuallyperformedbyfirstgeneratinga“trafficmatrix”[16]whichshowsthetrafficdemandsfromanypointinthenetworktoanyotherpoint.Itcanbecreatedatdif-ferentlevels-eachroworcolumnofthematrixcanbeaPoPorASorrouteroringress/egresslink.PoP-to-PoPtrafficmatricesareimportantforprovisioningandtrafficengineeringinter-PoPlinks,whichtypicallyrequirethemostcriticalengineering.

3

cTraffiPoP 10󰀀ciffarTSprint Network󰀀PoP 20󰀀TrafficPoP 30󰀀Customer󰀀Fig.2.Intra-domainrouteandtrafficthroughSprintafterBGPchange

Iftheinter-domainBGProuteforadestinationprefixchanges,thenthepathoftraffictooneofthesedestinationhoststhroughtheSprintnetworkmaychange.ConsidertheexampleinFigure1wheretrafficdestinedtothecustomerASenterstheSprintnetworkthroughPoP10.ThecurrentBGPannounce-mentfromthecustomerdeterminesthatthe“egress”orexitPoPforthistrafficisPoP20.EachBGPannouncementhasanexthopattributethatindicatestheegressBGProuterthattraffictothedestinationaddresscanbesentto.ThustheannouncementfromthecustomerwouldindicatethatthenexthopistheegressBGProuterinPoP20.IfanewBGPannouncementisheardthatchangesthenexthoproutertooneinPoP30,thenthistraf-ficwilltraveltoPoP30instead,asshowninFigure2.Asaresult,thetrafficisnowtravelingbetweenPoPs10and30in-steadofPoPs10and20.ThepathtakenbythistrafficinsidetheSprintnetworkmaybeverydifferent,andifthishappensfrequently,thetrafficengineeringandnetworkprovisioningforthisnetworkmaynolongerbeaccurate.ThelinksbetweenPoPs10and20willhavelessloadandthelinksbetweenPoPs10and30willhavemore.Congestionmayoccurandfuturegrowthofthenetworkmaybeimpacted.Further,duetothischange,thistrafficwillnowexperienceadifferentlatencybecauseittra-versesadifferentpath.Latencysensitiveapplicationssuchasvoice-over-IPmaybeadverselyaffectedifsuchchangesoccuroften.

Ifthishappensfrequently,estimatingtrafficmatricesforthisnetworkmaybemorechallengingthanpreviouslyassumed.Ifflowsbetweenendhostskeepchangingtheoriginanddestina-tionpointsinsidethelocalnetwork,thenthebytecountsbe-tweenthesepointswillkeepchanging.Withouttrafficmatricesthatcanaccountforandrepresentsuchvariability,trafficengi-neeringwillbecomeharder.Thereissignificantpotentialforsuchchangestooccur.Oftheover2,100ASesthatconnectdi-rectlytotheSprintnetwork,over1,600haveadditionalindirectpathsviaotherASestoreachthenetwork.Ingeneral,overhalfofthenon-ISPASesontheInternethavemultiplepathstothe“tier-1”ISPsoftheInternet[12].

Notethatinthiswork,weonlyaddresstheimpactontrafficinrelationtopathchangesinsidetheSprintnetwork.SomeofthesechangesmayalsobeassociatedwithpathchangesinsideotherASesandintheinter-ASpath.Thismayresultinchangestothecongestionorpacketdelayexperiencedbytraffic,which

SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER2003Sprint NetworkAS Z1.1.1.0/24packet1.1.1.1RouterRouter2.2.2.2AS XPoP ABGP TableDestNextHopPoP B1.1.1.0/248.8.0.0/162.2.2.23.3.3.3Fig.3.DatapacketandBGPcorrelationexample

mayevencausecongestioncontrolreactionsorenduserbehav-iortochange.Weaccountfortheseeffectsduetorealroutingchangesinourmethodologybycollectingandusingrealback-bonetraffic.However,weareunabletoaccountforhowtheenduserbehaviorwouldhavebeenhadtherebeennoroutingchanges.

IV.ANALYSISMETHODOLOGY

A.IngressPoPtoEgressPoPTrafficMatrix

Sincewewishtodeterminetheimpactofroutingchangesfortrafficengineeringandnetworkcapacityplanning,weareonlyconcernedwithinter-PoPvariationsintraffic.Typically,eachPoPishousedwithinasinglebuilding,andisacollec-tionofroutersandlinksbetweenthem.Ittendstohaveatwo-levelhierarchicalroutingstructure.Atthelowerlevel,customerlinksareconnectedtoaccessrouters.Theseaccessroutersareinturnconnectedtoanumberofbackbonerouters.ThebackboneroutersprovideconnectivitytootherPoPsaswellasotherlargeISPs.InstallingadditionalcapacitywithinaPoP(betweenac-cessroutersandbackboneroutersinthesamePoP)isrelativelylessexpensiveandrequireslessplanningandtimecomparedtocapacityupgradesbetweenPoPs(betweenbackboneroutersindifferentPoPs).Thuswebelievethatintra-PoPlinksarerarelycongestedandintra-PoPvariationsareunlikelytocausesignifi-cantlatencyvariation.

Ifweareonlyconcernedwithvariationsintheinter-PoPpathsthattraffictakesacrosstheSprintnetwork,weneedtoconsiderbothtrafficinformationandroutinginformationatthegranular-ityofPoPs.Foraparticularpacket,aningressPoPisthePoPinSprintwherethepacketentersthenetwork,whiletheegressPoPisthePoPwherethepacketleavesthenetwork,presumablyto-wardthedestinationaddress.WeneedtodetermineiftheegressPoPforanypacketchangesduetoBGProutechanges.Thus,weneedtoconstructaPoP-to-PoPtrafficmatrix.EachcolumnofthematrixcorrespondstoanegressPoPandeachrowcorre-spondstoaningressPoP.AnentryinthismatrixindicateshowmuchofthetrafficenteringthecorrespondingingressPoPex-itstheSprintnetworkatthecorrespondingegressPoP.ChangesovertimeinthiskindoftrafficmatrixindicateschangesintrafficpatternsbetweenPoPswhileignoringchangesintrafficpatternsbetweenlinksinsideanyPoP.

Togeneratethismatrix,weneedBGProutinginformationandpacketheaders.Foreverypacket,weneedtodeterminewhichPoPitwillexitthenetworkfrom.Thedestinationad-

4

dressinthepacketheaderindicateswherethepacketshouldfinallygoto.TheBGProutingtableentryforthisdestinationaddressgivesthelasthoprouterinsideSprintthatwillsendthepackettoaneighboringAS.WeuserouteraddressallocationsandroutinginformationspecifictotheSprintnetworktodeter-minethePoPthateveryegressrouterbelongsto.Inthisfashion,wecandeterminetheegressPoPforeverypacket.Forexample,considerFigure3.Attimet,apacketwithdestinationaddress1.1.1.1enterstheSprintnetworkatPoPA.WeusetheBGPta-blefromtheingressrouterinthisingressPoPtofindthedestina-tionaddress1.1.1.1.Thistableindicatesthattheroutingprefixis1.1.1.0/24andthenexthoprouteris2.2.2.2.Thismeansthatrouter2.2.2.2insidetheSprintnetworkwilldeliverthispackettoaneighboringASitandwilleventuallyreachthedestinationprefix1.1.1.0/24.UsingourknowledgeofrouterlocationsandroutinginformationspecifictotheSprintnetwork,wedeterminethat2.2.2.2isinPoPB.Thusweaddthesizeinbytesofthispackettothe(A,B)entryinthetrafficmatrixfortimet.Moredetailsofthistechniquecanbefoundin[17].B.VariabilityduetoBGP

Fortrafficengineeringandcapacityprovisioning,thetrafficmatrixneedstobeconsidered.Ifthismatrixvariesalot,itbe-comeshardertocalculateitaccuratelyandappropriatelyengi-neerthenetwork.Ashasbeenobservedinmuchpriorwork,Internettraffichasinherentvariability,duetoend-userbehav-ior,congestioncontrolandotherreasons.However,therecanbeevenmorevariabilityduetoBGProutingchanges.WewanttoidentifythevariabilityduetoBGP,nottheinherenttrafficvariability.Bycarefullyusingfreshversusstaleroutingdatatocalculatethetrafficmatrices,wecanidentifythevariabilitythatisduetoBGProutingchanges.

Inthefirstscenario,weattempttoaccuratelyaccountforwhathappensintheSprintnetwork.WemaintainthelatestBGPtableforeverypointintimeforarouterbyapplyingtheBGPupdatesastheyarereceivedattherouter.WecallthisthedynamicBGPtable.Foreverypacketthatisreceived,wecheckthisBGProut-ingtabletofindtheegressPoPforthatdestinationandupdatethetrafficmatrix.Inthisway,wecancalculatetheactualtime-varyingtrafficmatrixfortheSprintnetworkthataccountsforthecombinedeffectofinherenttrafficvariabilityandchangesduetoBGPannouncements.

Inthesecondscenario,weconsiderwhatwouldhappenifBGPchangesdidnotoccur.Wecreateanewtime-varyingtraf-ficmatrix.However,foreverypacket,weusetheBGProutingtablethatexistedatsomepreviouspointintime.WeusethesamestaticBGProutingtableforthewholetimeperiodofmea-surement.Thistime-varyingtrafficmatrixonlyaccountsfortheinherenttrafficvariability.Wecallthisthe“stale”trafficmatrix.Wethensubtractthesetwotime-varyingtrafficmatricestoobtainthechangestothetrafficmatrixthatwereonlyduetoBGPannouncements.Wecallthisthe“difference”matrix.Sup-posethatattimet,acellat(A,C)inthedifferencematrixhasvaluez.Thismeansthatatt,anextrazbytesfromPoPAegressedatPoPCduetooneormoreBGProutingchanges.Thereshouldbeacorresponding−zbytesforsomeothercellintheArow.

ThiscanoccurinthefollowingscenarioasinFigures1and2.

SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER2003Supposethatatthestartofourstudy,theegressPoPforthedestinationprefix1.1.1.0/24wasPoP20.Supposembytesofpacketstraveltothisdestinationprefixattimet−2,andattimet−1aroutingchangeoccurschangingtheegressPoPtoPoP30.Attimet,zbytesofpacketstraveltothisdestinationprefix.The“stale”trafficmatrixwillshow(10,20)=m,(10,30)=0attimet−2and(10,20)=z,(10,30)=0attimet.Thetrafficmatrixwithroutingchangeswillshow(10,20)=m,(10,30)=0attimet−2and(10,20)=0,(10,30)=zattimet.The“difference”matrixwillshow(10,20)=0,(10,30)=0attimet−2and(10,20)=−z,(10,30)=zattimet.

Notethathereweareonlyconcernedwithintra-ASchangesduetoBGP-i.e.,shiftsintheegressPoPwithinSprint.BGPchangesmaycauseinter-domainpathstochange.Thediffer-encematrixremovestheimpactofinter-domainchangesontraf-ficandonlyfocusesontheimpactduetointra-domainchanges.

V.ANALYSISDATA

WenowdescribethepacketandBGProutingdatathatwecollectfromtheSprintnetworktounderstandifBGProutingchangesimpacthowtraffictraversesthenetwork.A.PacketTraceCollection

TobuildanaccuratePoP-to-PoPtrafficmatrixforanysignif-icantamountoftime,weneedatremendousamountofdata.Sprinthasover40PoPsworldwide,andweneedtocreateap-proximatelya40X40matrix.SomePoPshavehundredsofingresslinks.Thuswewouldneedtocapturepacketheadersfromthousandsofingresslinks.Thisiscurrentlyinfeasible,duetomultiplereasonsincludingcollectionlogistics,storagelimitsandcomputationtimelimits.Instead,wecapturepackettracesfrommultipleingresslinksforseveralhoursatdifferenttimes,asshowninTableI.Weanalyzeourproblemforeachpackettraceindividually.ThusinsteadofbuildingPoP-to-PoPtrafficmatrices,webuildaningresslinktoegressPoPvectorforeachpackettrace,whichwerefertoasatrafficfanout.ThesumofallthetrafficfanoutsfromalltheingresslinksinaPoPformsarowofthetrafficmatrix.IfeachofthetrafficfanoutsisnotaffectedbyBGPchanges,thenthetrafficmatrixisunaffected,whichmakesiteasiertoengineerthenetwork.

Wecapturepackettracesusingthepassivemonitoringinfras-tructuredescribedin[18].Weuseopticalsplitterstotapintoselectedlinksandcollectionsystemsthatstorethefirst44bytesofeverypacket.EverypacketisalsotimestampedusingaGPSclocksignal,whichprovidesaccurateandfine-grainedtiminginformation.WepickmultipleingresslinksasshowninTableIinanattempttoobtainpackettracesrepresentativeofthetraf-ficenteringtheSprintnetworkfromasingleingressPoP.ThecategorizationoftheneighboringASesinto“tiers”isbasedontheclassificationin[19].Theinformationinthistableandtheresultsthatwepresentinlatersectionshavebeenanonymized.ThetracescannotbemadepubliclyavailabletopreservetheprivacyofSprint’scustomersandpeers.However,theyhavebeenmadeavailabletoacademicresearcherswhileatSprinttoperformmanystudies,suchasthisone.Statisticalinformationaboutthesetracesandtheresultsofthesestudiescanbefound

5

ontheInternet1.B.Approximations

Asignificantamountofcomputationtimeisrequiredfortheanalysisofthesetraces.Forexample,traceDinTableIrepre-sentsover2.5billionpacketsandconsumes162GBofstorage.Inordertokeepcomputationtimeslow,weemployonesimpli-ficationtechniqueandtwoapproximations.

Inthefirstapproximation,insteadofcalculatingandstoringaseparatetrafficfanoutforeveryinstantintimeduringatrace,wecreateafanoutforevery20minuteperiod.Thatis,weaggregateallthepacketsreceivedinevery20minutewindowandcalcu-latethetrafficfanoutduetothosepackets.Thesimplificationtechniquehereisthatwedonottreatpacketsindividually,butrathertreatthemasaflowaggregate.Forevery20minutewin-dow,wegrouppacketsbythedestinationaddress,andlookuptheegressPoPforthisdestinationaddressonce.Thissavesustheoverheadoflookingupthesameaddressmultipletimeswithnolossinaccuracy.Incalculatingthetrafficmatrixwithrout-ingchanges,weuseafreshBGPtableatthestartofevery20minutewindow.Webatchtheroutingtablechangesandcom-puteanewtableevery20minutes.Thustheremaybesomeout-of-dateroutinginformationfromonewindowtothenext.Whilewechoose20minutesarbitrarily,wehaveexperimentedwithdifferentvaluesdownto1minuteintervals.Wefindthatthiswindowsizeintroducesnegligibleerrorsinthetrafficfan-outcalculationwhilesmallervaluessignificantlyslowdownthecomputation.

Thesecondapproximationisthatweonlyconsider99%ofthetraffic.Morespecifically,weonlyconsiderthelargestflows(packetsgroupedbythedestinationaddress)thataccountforatleast99%ofthetraffic.Wehaveobservedthephenomenonthatthereareafewflowsthataccountforthemajorityoftrafficandmanyflowsthatcontributeaninsignificantamountoftraf-fic[20].Byignoringthesmallestflowsthatcontributeatotalofatmost1%ofthetrafficinany20minutewindow,wesignifi-cantlyreducethecomputationoverhead.Forexample,intraceD,only30,000outof200,000destinationaddressescarry99%ofthetraffic.Thus,ineach20minutewindow,weonlylookup30,000addressesintheroutingtable,insteadofalmost10timesasmany.Thereforethisapproximationmakesthefan-outcom-putationsignificantlyfasteratthecostofignoringonly1%ofthetotaltraffic.

C.BGPRoutingCollection

TodeterminewhichegressPoPapacketissentto,weneedtocorrelatethepacketheaderswithBGProutinginformation.WecollectBGPdatafromPoPs8and10.WeusetheGNUZebra2routingsoftwaretoconnecttoeachofthesePoPsandcollectroutingupdates.InthecaseofPoP8,weconnecttothesamerouterthatwecollectpackettracesfrom.TheZebralis-tenerconnectsasaniBGProutereflectorclientandstoresallrouteupdatesthatarereceived.ForPoP10,theZebralistenerconnectsasacustomerASinaneBGPsession.Eachoftheup-datesistimestampedtoallowcorrelationwiththepackettraces

1Sprint

ATLIP-MonitoringProject,http://ipmon.sprintlabs.com/2GNUZebraRoutingSoftware,http://www.zebra.org/

SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER20036

TABLEIPACKETTRACES

TraceABCDEPoP88888Link22313LinkSpeedOC-12OC-12OC-12OC-12OC-12LinkTypeingressingressingressingressingressNeighborTier-2ISPTier-2ISPTier-3ISPTier-2ISPTier-3ISPDate06Aug200206Aug200206Aug200206Aug200207Aug2002Duration(hours)

6.19.96.422.49.6thatwecollect.EachupdatecorrespondstoanactualchangeintheBGProutingtableattherespectiverouter.ThuswecapturealltheBGProutingchangesthatoccurforthegivenrouter.WhilewepresentdatafromtheeBGPlistenerforcompari-son,weprimarilyfocusonouriBGPdata.iBGPdataisricherthaneBGPdatainmanyaspects.ItreflectsbothchangesinBGProuteslearnedfromexternalASesbytheSprintnetwork,andchangestoBGProutesforinternaladdresses.ItidentifiestheegressrouterwithinSprintforanydestinationprefix,whileaneBGProutingtablefromaparticularcollectionrouterwouldonlyindicatetheaddressofthatcollectionrouterforalldestina-tionprefixes.iBGPdatareflectschangesinIGProutingaswell,becauseiftheIGProutingmetricchangesresultinginachangetothebestnexthopBGProuterforaprefix,itwillbeseenasachangetothecorrespondingiBGPtableentry,whichwouldnotbetrueofeBGP.Also,itincludessomeprivateBGPcommu-nityattributesthathelpusdeterminethesourceoftheroutingannouncementswithintheSprintnetwork,whichwouldnotbeseenineBGPdata.

VI.RESULTS

WhilewehaveanalyzedallthetracesinTableI,wewillfocusontheresultsfrompackettraceDforbrevity.Ouranalysisforallthetracesproducedverysimilarresults.WepresenttraceDheresinceitisthelongesttrace.A.StabilityoftheBGPRoutingTable

WebeginbyconsideringhowstabletheBGProutingtableis.Iftheroutingtabledoesnotchangeatall,thenitcanhavenonegativeimpactontrafficwithintheSprintnetwork.InFig-ure4,weshowthenumberofBGProutingtablechangesforatypicalweekinPoPs8and10.Therewere765,776eBGProut-ingtablechangesand1,344,375iBGProutingtablechangesduringthisweek.Eachpointinthegraphsshowsthenumberofroutingtablechangesduringa20minutewindow.WeseethatthetypicalnumberofiBGProutingtablechangesisabout133perminute,whileeBGPchangesoccuratabouthalfthatrate.WeobservethatoccasionalspikesareinterspersedamongthiscontinuousBGP“noise”of133changesperminute.Duringthespikes,theaveragenumberofiBGProutingchangesismuchhigher,upto6,500perminute.

InFigure5,weshowahistogramofthenumberofiBGProutechangesduringatypicalweek.Weaggregateroutechangesinto20minutewindows.Weplotthepercentageofnumberofchangesineachwindowontheverticalaxis,withthehorizontalaxisshowingtheactualnumberofchanges.Inthebottomgraph,therangeofthehorizontalaxisislimitedto10,000inorderto

)nib 0e0tu0n5i1m 02( stn0e0v0E50

1234567

Time (days)

)n0ib0 0e0tu1nim0 0020(6 stnev0E0020

1234567

Time (days)

Fig.4.BGProutingtablechangesfromTuesday06August2002toTuesday

13August2002(iBGPontop,eBGPonbottom)

8)%(6 marg4otsiH2001000020000300004000050000Number of updates per 20 minute bin8)%(6 marg4otsiH200200040006000800010000Number of updates per 20 minute binFig.5.HistogramofiBGProutechangesoveratypicalweek

SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER20038)%(6 marg4otsiH2001000020000300004000050000Number of updates per 20 minute bin8)%(6 marg4otsiH200200040006000800010000Number of updates per 20 minute binFig.6.HistogramofiBGProutechangesoveratypicalmonth

52sexif0e2rP fo5 1# ni e0g1nahC5 %0PoPs

Fig.7.ChangesinprefixesateachegressPoPduringtraceD

avoiddistortingtheshapeofthegraphwithoutliers.Thisfigureillustratesthenoisecharacteristicofroutechangesmoreclearly.Thenumberof20minuteintervalsduringwhich1,000orfewerchangesoccurredisnegligiblysmall.Ontheotherhandthereare1,000−4,000changesper20minuteintervalforamajor-ityoftheentireweek.Figure6plotsthehistogramofchangesoveratypicalmonth.TheshapeissimilartothatinFigure5whichconfirmsthatthedistributionofroutechangesissimi-laronlongertime-scales.Wehaveverifiedthisbehavioroveraperiodofseveralmonths.

ThepresenceofcontinuousBGProutingtablechangesindi-catesthattheInternet’sroutinginfrastructureundergoescontin-uouschange.Thismayberelatedtothesize,complexityanddistributedcontroloftheInternet.ThusBGPupdateshavethepotentialtoaffectintra-domaintrafficcontinuously,andnotjustduringshortperiodsofinstabilityintheInternet.Theseshortperiodsofupdatespikesarerelativelyinfrequent,butweob-servethattheycancauseaten-foldincreaseintherateofrout-ingchange.Itisdifficulttoaccuratelyidentifythecauseofsuchspikes.However,significanteventssuchasroutercrashes,BGPsessionrestorationandmaintenanceactivitiesarelikelycauses.IfanunusualeventsuchasthelossofconnectivitytoaPoPoramajorneighboringASoccurs,thensignificanttrafficshiftwillnaturallyoccur.Inthiswork,wedonotfocusontheserareeventsbutinsteadstudytheimpactofroutingtablechangesdur-ingmoretypicaltimeperiods.WeconfirmthatnomajorlossofconnectivityoccurredduringtraceDbypresentingFigure7.

7

Dynamic BGP2.0e+08Static BGP1.5e+081.0e+08020040060080010001200Time(mins)Fig.8.BytesfromtraceDtoPoP2fordynamicBGPtableandstaticBGPtable5e+06

Dynamic BGP−Static BGP

0e+00

−5e+06

0

200

400

6008001000

1200

Time(mins)

Fig.9.DifferenceinbytesfromtraceDtoPoP2(dynamicBGP-staticBGP)

WetrackthenumberofdestinationprefixesthatexiteachegressPoP.Inthisfigure,weplotthemaximumpercentagechangeinthisnumberforeachPoPthroughoutthedurationofthetrace.Weseethatinmostcases,lessthan10%ofthetotalprefixesex-itingateachPoPwereaddedorremovedfromtheBGProutingtable.Thisistypicalbehaviorduringtheothertracesthatweanalyzed.Thetwocasesof25%and12.5%changewereduetomaintenanceattwonewegressPoPsbeingprovisionedintotheSprintnetwork.NotrafficexitedthosetwoPoPsfromtraceD.B.OverallImpactonIntra-DomainTraffic

WenowinvestigateifthiscontinuousnoiseofBGProutingtablechangesaffectshowtrafficisforwardedintheSprintnet-work.Figure8showsthetrafficvolumeper20minutesforpackettraceDtowardaparticularegressPoPintheSprintnet-

0052y0cn0e5u1qerF00500

20406080100

Percentage Shift

Fig.10.HistogramofegressPoP%trafficshiftfortraceD

SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER20038

TABLEII

SUMMARYOFTRACERESULTS

Trace#ofCellsAvgShiftperCellStdDevofShiftCellsWith>5%Shift

VolumeShiftTotalVolume%VolumeShiftA6480.17%1.62B10440.03%0.24C6840.60%7.53D24120.07%2.03E10082.35%15.05work.OnelineindicatesthetrafficcomputedwithastaticBGPtablewhiletheotheristhatwithadynamicBGPtable.Thefluc-tuationsobservedinbothcasesariseduetothevariabilityinher-entintraffic,suchasduetouserbehavior.Thedifferencebe-tweenthetwolinesshowshowmuchofthistrafficshiftedinsidetheSprintnetworkduetoBGPchanges.Sincethetwolinesareveryclosetoeachother,thisvariabilityisnegligible.Figure9plotsthedifferenceinthenumberofbytestowardtheegressPoPforthetwocases,bysubtractingthevalueforthestaticBGPcasefromthevaluefromthedynamicBGPcase.ThesumofthisdifferenceacrossallingresslinksforeachegressPoPformsthedifferencematrixthatwepreviouslydescribed.Weseethatthereisnodifferenceformostofthetimeintervals.Themaximumdifferenceisabout7MBforany20minutewindow,comparedto120MBoftraffictothisPoPatthattime,whichisonly5.8%.InFigure10weshowahistogramofthenumberoftimeintervalsacrossallPoPsfortraceDbythepercentageshiftintraffic.Weseethatlessthan5%oftrafficshiftoccurredinalmostallcases.

InTableIIwesummarizetheresultsforallthetraces.Thesecondcolumnshowsthetotalnumberofcellsinthetrafficfanout(i.e.,thenumberof20minutetimeperiodsinthetracemultipliedbythenumberofegressPoPs).The“AvgShiftperCell”columnshowsthepercentageoftrafficshiftaveragedacrossallthecellsandthenextcolumnshowsthestandardde-viationofthisvalue.The“CellsWith>5%Shift”columnshowshowmanyofthesecellshadmorethana5%trafficshift.WefindthattheaverageshiftoveralltimeperiodsandPoPsisonly0.07%fortraceD.Inonly2caseswasthepercentageshiftmorethan5%.However,inbothcases,theactualvolumeoftrafficthatshiftedwasonlyseveralMB.FromthelastthreecolumnsinTableII,weshowthatofthe1TBoftrafficvolumeintraceD,only145MBchangedtheegressPoPasaresultofaBGPchange,whichisonly0.01%.

Asshownbythelastcolumn,verysmallpercentagesoftheingresstrafficmovearoundduetoBGPchangesacrossallthetracesthatweanalyzed.However,therearesomecaseswheretrafficfromaningresslinktocertainPoPsforcertaintimeperi-odsshifts.Whilethesedonotrepresentlargevolumesoftrafficthatcanimpacttrafficengineeringdecisions,theycanimpacttheperformanceofindividualapplications.Delay-sensitiveap-plicationssuchasvoice-over-IPmayexperiencedegradedappli-cationqualityduetotrafficshiftsbetweenegressPoPsforindi-vidualprefixes.Forexample,alargevolumeoftraffictowardacustomernetworkP1mayshiftfrequentlybetweentwoegressPoPsAandB,whilethetraffictowardanothercustomernet-workP2mayshiftinthereversedirection.Whilethismaylead

4103MB398GB0.03%058MB791GB0.01%433MB556GB0.01%2145MB1TB0.01%24144MB919GB0.02%AS Y󰀀PoP 2󰀀Sprint Network󰀀PoP 8󰀀PoP 9󰀀AS X󰀀Fig.11.TrafficshiftfromPoPs2and8toPoP9

toverylittlechangeinthetotalvolumeoftraffictowardegressPoPsAandB,customersP1andP2mayexperiencesignificantdelayfluctuationsacrosstheSprintnetwork.Howeverwefindthatforourpackettraces,thegreatestnumberofshiftsbetweenegressPoPsacrossallflows(asdefinedinSectionV)isonly3.Forexample,intraceD,therewere6720-minutewindows,withanaverageof23,409flowsfor99%ofthetrafficineachwindow.Anaverageof5−6flowsexperiencedashiftintheegressPoPperwindow.Therefore,onlysmallnumbersdelay-sensitiveflowsarelikelytoexperiencefluctuationsinqualityacrosstheSprintnetwork.

C.SpecificCasesofEgressShiftsforIntra-DomainTrafficWenowexaminetwoparticularcasesofvariabilityinordertogaindeeperinsightsintosuchoccurrences.IntraceD,about42%ofthetotaltrafficvariabilityinvolvedonlytwodestinationnetworks.ThesetwonetworksconnecttotheSprintnetworkinmultipleplaces,asshowninFigure11.ThisvariabilityoccurredbetweenthreePoPsthatarespreadacrosstheeastcoastoftheUS.WefoundthattrafficgoingtoASXshiftedfromthelongerASpathviaPoP8totheshorterASpathviaPoP9,whiletraf-fictoASYshiftedfromtheshorterASpathviaPoP2tothelongeroneviaPoP9.Ineachcase,theBGPpathchangedonlyoncethroughouttraceD.Thesechangesintheinter-domainpathscausedachangeintheegressPoPforthesedestinationad-dressesbecausedifferentneighboringASespeerwiththeSprint

SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER20032e+06

Dynamic BGP−Static BGP

0e+00

−2e+06−4e+06

0200400

60080010001200

Time(mins)

Fig.12.DifferenceinbytesfromtraceDtoPoP8(dynamicBGP-staticBGP)

1e+07

Dynamic BGP−Static BGP

5e+06

0e+00

0

200

400

6008001000

1200

Time(mins)

Fig.13.DifferenceinbytesfromtraceDtoPoP9(dynamicBGP-staticBGP)

networkindifferentPoPs.InFigures9,12and13,weshowtheshiftintrafficexitingatPoPs2,8and9.WecanseethatthedipsinFigures9and12correspondtothepeaksinFigure13.Thesetwoexamplesaretypicalofthevariabilityinthefan-outtoegressPoPs.

•homedWeobservedestinationtrafficnetworks.

shiftingbetweendifferentpathstomulti-•eachOftentrace.

theBGPpathwillchangeonlyonceortwiceduring•shifts.

OnlyafewnetworksareinvolvedinthemajorityoftrafficVII.LIMITEDIMPACTOFBGPCHANGESONTRAFFICIntheprevioussection,weshowedthatthetrafficfan-outintheSprintnetworkishardlyaffectedbychangesinBGProutes.YetthereisasignificantamountofBGPactivityallthetime.Inthissection,weexplainthisdiscrepancy.

A.DistributionofBGPChangesandTrafficAcrossASesWebeginbyexaminingwhetherroutingtablechanges,traf-ficandtrafficshiftsaresimilarlydistributedacrossalltheASes.Sincethereareover14,000ASes,wesummarizetheASesinto5distinctcategoriesforsimplicity.ThiscategorizationisbasedonSubramanianetal.[19].Tier-1ASescorrespondtolargeglobalISPssuchasSprint.Tier-2ASestendtobenationalISPs,Tier-3andTier-4areregionalISPs.Tier-5ASesarestubnetworksthatdonotprovideconnectivitytootherASes.Ingen-eral,aTier-nASisacustomerofoneormoreTier-(n-k)ASes.InFigure14,wecompareBGProutechanges,trafficdestina-tionsandtrafficshiftsfortheoriginASes(i.e.,theterminating

9

70󰀀60󰀀50󰀀All Traffic󰀀Traffic Shift󰀀%󰀀

40󰀀All BGP Updates󰀀30󰀀20󰀀10󰀀0󰀀Tier1󰀀

Tier2󰀀Tier3󰀀Tier4󰀀Tier5󰀀

Origin AS󰀀

Fig.14.iBGProutechanges,trafficandtrafficshiftsduringtraceDbyorigin

AS

80󰀀70󰀀60󰀀All Traffic󰀀50󰀀Traffic Shift󰀀All BGP Updates󰀀%󰀀

40󰀀30󰀀20󰀀10󰀀0󰀀Tier1󰀀

Tier2󰀀

Tier3󰀀

Tier4󰀀

Tier5󰀀

Next AS󰀀

Fig.15.iBGProutechanges,trafficandtrafficshiftsduringtraceDbynextAS

ASalongthepath).Weseethatthemajorityoftrafficisdes-tinedtoTier-5ASes.ThisisconsistentwiththenotionthatthetiersprovideconnectivitytoASesexceptforTier-5stubASesthathousetheendhosts.Weseeasimilartrendwiththenum-berofBGPchanges.MostoftheroutesthatareaffectedaretoprefixesterminatinginTier-5ASes.However,weseethatthetrafficshiftsaredisproportionatelymorefrequentfordesti-nationprefixesinTier-4ASes.Thisisduetoafewnetworksbeinginvolvedinthemajorityoftrafficshifts,asweshowedintheprevioussection.

InFigure15,wecomparethesamedistributionsacrossthenextASes(i.e.,theneighboringASthattrafficorpathsgoto).WeseethatmosttrafficleavestheSprintnetworktoTier-2ASes.ThisisconsistentwiththenotionthatSprintbeingaTier-1globalISPprovidesconnectivitytomanyTier-2nationalISPs.However,weseethatthemajorityofBGProutechangesarere-ceivedfromneighboringTier-3ASes.Consistently,themajorityoftrafficshiftsinvolveneighboringTier-3ASes.Again,thisisduetoafewnetworksbeinginvolvedinthemajorityoftrafficshifts,asweshowedintheprevioussection.Tier-1ASesalsoaccountforasignificantnumberofBGPchanges.SinceSprintpeersdirectlywithTier-1ASes,andsincethesefewASestran-sitmoreprefixesthanotherASes,tier-1ASesshowmoreBGPchangesinFigure15thaninFigure14.

ThuswefindthatmosttrafficleavestheSprintAStoneigh-boringTier-2ASesandmosttrafficterminatesatTier-5ASes.However,thetrafficshiftsarenotdistributedacrosstheseASesinthesamemannerandtheBGPchangesarenotdistributedin

SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER2003e2000tunim 15001/seta1000dpu P500GB #14:00018:0000:0006:0012:00Aug 6, 2002 Aug 7, 2002 (UTC) etu1000nim 1800/sex600iferP400 detc200effA #14:00018:0000:0006:0012:00Aug 6, 2002 Aug 7, 2002 (UTC) Fig.16.iBGProutechangesandprefixesaffectedduringtraceD

seta# of Prefixesdp10,000# of BGP updatesU & sex100iferP00 4 8 121620242832Prefix Length200xAverage # of BGP updates/prefixifer150p/set100adpU50 #0048121620242832Prefix LengthFig.17.iBGProutechangesandprefixlengthduringtraceD

thesamewayastrafficshifts.ThiscanmeanthateithertheBGPchangesfromeachASarenotspreadevenlyacrosstheBGPta-bleortheBGPchangesdonotcauseegressPoPchanges.Wenowexplorethefirstpossibilityandthenexplorethesecondpos-sibilityattheendofthissection.

B.DistributionofBGPChangesAcrosstheRoutingTableInFigure16,weshowthenumberofroutingtablechangesandthenumberofprefixesaffected.Weagainseeinthetopgraphthatanaverageof133routingtablechangesoccureveryminute.Inthesecondgraph,weseethatonaverage,roughly70routingtableentriesareaffectedeveryminute.Evenduringthespikeof1,500routingtablechangesearlyinthetrace,only900routingtableentrieswereaffected.Thisshowsthatthesamedestinationprefixcanreceivemultipleroutingchangeswithinashorttimeperiod.

InFigure17,weshowthedistributionofroutechangeswithprefixlength.Fromthetopgraph,weseethatthenumberofchanges(darkverticalbars)doesnotdirectlycorrespondtothenumberofroutingtableentries(lightverticalbars)foreachpre-fixrange.Inthesecondgraph,wenormalizethenumberofchangesbythenumberofentriesforeachprefix.Weseethat/8addressesreceiveanunusuallyhighnumberofchanges./8pre-fixesconstitutelessthan0.01%oftheBGPtable,butaccountfor18%oftheroutechangesreceived./28,/30,/32address

10

2000etunim1500/seta1000dpu la500toT14:00018:0000:0006:0012:00Aug 6, 2002 Aug 7, 2002 (UTC)e20001500Fig.18.BGProutechangesforallprefixesduringtraceD100015etun500im/10setad14:00018:0000:0006:0012:00pu5 latoT14:00018:0000:0006:0012:00Aug 6, 2002 Aug 7, 2002 (UTC) 15Fig.19.BGProutechangesforheavy-hittersduringtraceD10prefixesalso5receiveahighnumberofupdatesperroutingtableentry.Thesemorespecificentriestypicallyrepresentaddresses14:000internalwithinthe18:00Sprintnetwork00:00andcustomer06:00networks12:00thatdonothaveapublicASnumber.TheyareusuallyrepresentedintheeBGProutingtablebyalargeraddressrange.

ThusweseethatBGProutingtablechangesarenotspreadevenlyacrosstheroutingtable.Someroutingtableentriesre-ceivemultiplechanges,andentriesofcertainprefixlengthsaremorepronethanothers.Thusifmostofthetrafficissunkbydestinationaddressesthatareinthesechange-proneprefixes,thenthereismorepotentialforshift.

C.DistributionofBGPChangesAcrossTraffic

SinceBGProutechangesarenotspreaduniformlyacrosstheroutingtable,andsincesubsequenttrafficshiftsarealsonotproportionatelyspreadacrossneighboringandoriginASes,wenowexaminehowBGProutechangesarespreadacrosstraf-fic.Specifically,weexaminewhichprefixescarrythemajor-ityofthetrafficandexaminehowtheyareaffectedbyBGProutechanges.Ourpriorwork[17],[20]showedthatthetraf-ficinSprint’snetworkcontainsheavy-hitters-i.e.,asmallsetofdestinationnetworkprefixesthattogethercontributeaverylargeportionoftraffic.Weobservedsimilarheavy-hittersinthepackettracesweanalyzedinthispaper.IntraceD,wefoundthat30,000addressesoutofatotalof200,000inthetraceac-countedfor99%ofthetraffic,whichisabout15%ofthead-dresses.Only1.5%oftheaddressesinthetraceaccountedfor80%ofthetraffic.

InFigure18,weseeagainthenumberofiBGProutechangesduringtraceD,withtheaverageofabout133changesperminute.Incontrast,Figure19showsthenumberofchangesforonlythedestinationprefixesthataccountforatleast80%ofthetraffic.Weseeasignificantlylowernumberofroutechanges.Themaximumnumberofchangesinanyoneminuteintervalisonly15,whileacrossallprefixes,themaximumnumberis1,600.ThisshowsthatonlyasmallfractionoftheBGProutechangesaffectthemajorityoftraffic.ThisistrueofallthetracesweexaminedinTableI.

1000500SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER200314:00018:0000:0006:0012:00Aug 6, 2002 Aug 7, 2002 (UTC)etu2000nim/s1500egnah1000C15 poH500txe10N14:00018:0000:0006:0012:00Aug 6, 2002 5Aug 7, 2002 (UTC)Fig.20.0NexthopBGProutechangesforallprefixesduringtraceD14:0018:0000:0006:0012:00Aug 6, 2002 Aug 7, 2002 (UTC) et15unim/se10gnahC p5oHtxeN14:00018:0000:0006:0012:00Aug 6, 2002 Aug 7, 2002 (UTC) Fig.21.NexthopBGProutechangesforheavy-hittersduringtraceD

However,forourparticularproblem,weareonlyconcernedwithroutechangesthataffectthenexthopattribute.Thenexthopattributedeterminestheegressrouter,andthustheegressPoP,thattraffictoaparticularnetworkprefixwillgoto.OnlychangestothisattributecancauseshiftintheegressPoPfortraffic.InFigure20,weshowthenumberofBGProutechangesthataffectedthenexthopforallprefixes.WeseethatthenumberofeventshasdroppedtoabouthalfofthatseeninFigure18.Further,weareonlyconcernedwithchangestothenexthopforthemajorityoftraffic,whichweshowinFigure21.HereweseeanevensmallernumberofroutechangesthataffectourproblemofegressPoPshift.Only11%oftheBGPchangesforheavy-hitterscausednexthopchanges,while63%oftheBGPchangesforallprefixescausednexthopchanges.

Weconcludethatheavy-hittersreceivefewerroutechangesthanmostprefixes,andfurther,asignificantlylowernumberofroutechangesforheavy-hitterscausesnexthopchanges.Forourproblem,veryfewofthelargenumberofroutechangesmatter.Only0.05%ofthetotalroutechangesduringtraceDcausednexthopchangesforheavy-hitterdestinationad-dresses.Thesearetheonlyonesthatcanpotentiallyaffecttraf-ficfan-outtowardegressPoPs,althoughinsomecasesthenext-hopchangemaybefromoneroutertoanotherwithinthesameegressPoP.ThisexplainsourfindingsthatBGProutechangescausenomorethan0.03%oftrafficvolumetoshifttheegressPoP.

Therecanbetworeasonsforthisphenomenon.First,ifanet-workprefixisunstablethenpackettravelingtowarditmaybefrequentlydisrupted,causingTCPconnectionstobackoffandeventerminate.Second,networksthatattractlargevolumesoftrafficmayhavemoreresourcestoaffordgoodnetworkadmin-istrationandstableBGPconfigurationswiththeirpeers.Re-gardlessofthecauseofstabilityofheavy-hitters,thereisasig-nificantamountofinstabilityfornon-heavy-hitters.However,itisdifficulttoaccuratelydeterminethecauseoftheinstability.Anyofalargenumberofnetworkevents(fromintra-domainIGPmetricchangestorouterconfigurationchangesinaneigh-boringAS)cancauseaBGPchangetooccur.SinceBGPis

11

apathvectorprotocol,itisdifficulttoevendeterminetheAS

thatoriginatedaparticularroutingchange,letalonethecauseofit.Griffin[14]showsthataBGPnetworkcannondeterministi-callychangeroutingeventsincomplexandnon-intuitivewaysastheyarepropagated.WhileitmaybepossibletostudylargenumbersofcorrelatedroutingchangesfrommultipleBGPvan-tagepoints,webelieveitisdifficulttoaccuratelydeterminethecausebehindtheinstabilityofindividualdestinationprefixes.

VIII.CONCLUSIONS

RecentstudiesofBGPhaveshownasignificantgrowthinthesizeanddynamicsofBGPtables.ThishasledtoconcernsaboutwhatimpactthesetrendsinBGPhaveontheInternet.WefocusonthisissueforalargeISPsuchasSprint.LargeISPnetworksaredesignedandmaintainedonthebasisofmet-ricssuchaslatencyandtheneedtoprovisionthenetworkforfuturegrowthandchangesintraffic.Thisengineeringistyp-icallybasedoncalculatingatrafficmatrixtodeterminetrafficdemandsfordifferentpartsofthenetwork.FluctuationsinBGProutescancausethistrafficmatrixtochange,invalidatingtheengineeringeffort.Further,latencysensitiveapplicationscanbeadverselyaffected.

WehavecorrelatediBGProutechangeswithpackettracesinSprint’sIPnetworktomeasurethevariabilityintrafficfan-outfromingresslinkstoegressPoPs.Wehavepresentedamethod-ologythatseparatesthevariabilityinherentintrafficfromthevariabilitythatisduetoBGPchangeswithinanAS.FromouranalysisofseveralpackettracesandassociatedBGPchanges,ourfindingsare:

•ingTherechangesiscontinuousperminute.iBGPThisnoiseisinterspersedofmorethanwithahundredrareperiodsrout-ofhighchanges,asmuchasseveralthousandperminute.eBGPchangesoccuratabouthalfthisrate.

•linkHardlythatweanymeasuredfractionofexperiencedthevolumeanofegresstrafficfromPoPshiftanyingressduetoBGPchanges.Atanytime,onlyseveralflowsexperiencedanegressPoPshiftoutoftypicallytensofthousandsofflowsinatrace.Affectedflowsexperiencednomorethanafewshifts.•ofOnlythetrafficfewnetworksshift.Thistendinvolvestobeinvolvedtheinter-domaininasignificantpathchanging,fractionresultingintheintra-domainpathchanging.

•entriesBGPreceiveroutechangesmultiplearechanges,notdistributedandsomeevenly.aremoreSomelikelyroutetoreceiveachangethanothers.BGPchangesandtrafficseemsimilarlydistributedbyoriginAS,whileBGPchangesandtraf-ficshiftsseemsimilarlydistributedbynextAS.RelativelyfewBGPchangesaffectthemajorityofthetraffic,andevenfewerchangetheegressPoP.

ThetrafficfanoutislargelyunaffectedbyBGProutingchangesforseverallinksthatwehaveconsidered.Iftheselinksarerepresentativeofalltheingresslinks,thenitisreasonabletoassumethatthetrafficmatrixisunaffected.Thereforeitispossibletoperformnetworkengineeringandprovisioningtaskswithoutconcernfortheeffectofglobalroutingchanges.BGPchangesareunlikelytocauselatencyvariationswithinanASformosttraffic.Yet,someopenissuesremain.Areheavy-hittersrelativelyimmunefromchangeduetotheengineeringofnet-worksordoTCPdynamicsdictatethatonlystableroutescan

SPRINTATLRESEARCHREPORTRR03-ATL-111377-NOVEMBER200312

supportheavy-hitters?Unstableroutesmayreflectconnectivitythatisundergoingrapidchangesorheavypacketloss,andthatmaycausetheTCPcongestioncontrolalgorithmtocutbackitssendingrate.AnotheropenissueisthatsincethereissomuchBGPchange,thecauseandoriginofsuchupdatesshouldbeun-derstood.However,duetothenon-linkstatenatureofBGP,itisdifficulttoaccuratelyidentifythecauseofindividualupdates.CorrelationbetweensuccessiveupdatesfromseverallocationsintheInternetmayprovidebettersuccess.ThisworkexploredaspecificeffectofBGPchangesontheSprintnetwork,i.e.vari-abilityinintra-domaintrafficpatterns,duringnormalnetworkbehavior.Periodicnetworkmaintenanceandlinkfailuresmaycauseadditionalimpactontrafficthatwehavenotexplored.

IX.ACKNOWLEDGEMENTS

OurworkwouldnothavebeenpossiblewithoutthehelpofSprintlinkEngineeringandOperationsincollectingBGPandpackettracesfromthenetwork.Inparticular,wewanttothankDaveMeyer,RyanMcDowellandMujahidKhan.

REFERENCES

[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20]

D.Oran,“OSIIS-ISintra-domainroutingprotocol,”RFC1142,IETF,February1990.

J.Moy,“OSPFversion2,”RFC1583,IETF,March1994.

J.W.Stewart,BGP4:Inter-DomainRoutingintheInternet.Addison-Wesley,1998.

Y.Vardi,“Networktomography:estimatingsource-destinationtrafficin-tensitiesfromlinkdata,”JournaloftheAmericanStatisticalAssociation,vol.91,no.433,pp.365–377,1996.

C.TebaldiandM.West,“Bayesianinferenceonnetworktrafficusinglinkcountdata,”JournaloftheAmericanStatisticalAssociation,vol.93,no.442,pp.557–576,1998.

J.Cao,D.Davis,S.Wiel,andB.Yu,“Time-varyingnetworktomography:Routerlinkdata,”JournaloftheAmericanStatisticalAssociation,vol.95,pp.1063–1075,2000.

Y.Zhang,M.Roughan,N.Duffield,andA.Greeberg,“Fastaccuratecom-putationoflarge-scaleIPtrafficmatricesfromlinkloads,”inProc.ACMSIGMETRICS,June2003.

G.Huston,“AnalyzingtheInternet’sBGPRoutingTable,”CiscoInternetProtocolJournal,March2001.

T.Bu,L.Gao,andD.Towsley,“Onroutingtablegrowth,”inProc.IEEEGlobalInternetSymposium,2002.

J.Rexford,J.Wang,Z.Xiao,andY.Zhang,“BGProutingstabilityofpopulardestinations,”inProc.InternetMeasurementWorkshop,2002.S.UhligandO.Bonaventure,“Implicationsofinterdomaintrafficcharac-teristicsontrafficengineering,”EuropeanTransactionsonTelecommuni-cations,2002.

S.Agarwal,C.-N.Chuah,andR.H.Katz,“OPCA:Robustinterdomainpolicyroutingandtrafficcontrol,”Proc.IEEEInternationalConferenceonOpenArchitecturesandNetworkProgramming,2003.

CiscoSystemsInc.,“CiscoIOSIPandIProutingcommandreference,release12.1.”

T.G.Griffin,“Whatisthesoundofonerouteflapping?,”inNetworkMod-elingandSimulationSummerWorkshop,Dartmouth,2002.

Labovitz,Malan,andJahanian,“Internetroutinginstability,”inProc.ACMSIGCOMM,1997.

A.Medina,N.Taft,K.Salamatian,S.Bhattacharyya,andC.Diot,“TrafficMatrixEstimation:ExistingTechniquesandNewDirections,”inProc.ACMSIGCOMM,August2002.

S.Bhattacharyya,C.Diot,J.Jetcheva,andN.Taft,“Pop-levelandaccess-link-leveltrafficdynamicsinatier-1PoP,”inProc.InternetMeasurementWorkshop,2001.

C.Fraleigh,C.Diot,B.Lyles,S.Moon,P.Owezarski,K.Papagiannaki,andF.Tobagi,“DesignandDeploymentofaPassiveMonitoringInfras-tructure,”inPassiveandActiveMeasurementWorkshop,April2001.

L.Subramanian,S.Agarwal,J.Rexford,andR.H.Katz,“CharacterizingtheInternethierarchyfrommultiplevantagepoints,”Proc.IEEEINFO-COM,2002.

K.Papagiannaki,N.Taft,S.Bhattacharyya,P.Thiran,K.Salamatian,andC.Diot,“ApragmaticdefinitionofelephantsinInternetbackbonetraffic,”Proc.InternetMeasurementWorkshop,2002.

因篇幅问题不能全部显示,请点此查看更多更全内容