您的当前位置:首页高一数学知识点总结

高一数学知识点总结

2022-12-23 来源:飒榕旅游知识分享网

  集合的运算

  运算类型交 集并 集补 集

  定义域 R定义域 R

  值域>0值域>0

  在R上单调递增在R上单调递减

  非奇非偶函数非奇非偶函数

  函数图象都过定点(0,1)函数图象都过定点(0,1)

  注意:利用函数的单调性,结合图象还可以看出:

  (1)在[a,b]上, 值域是 或 ;

  (2)若 ,则 ; 取遍所有正数当且仅当 ;

  (3)对于指数函数 ,总有 ;

  二、对数函数

  (一)对数

  1.对数的概念:

  一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)

  说明:○1 注意底数的限制 ,且 ;

  ○2 ;

  ○3 注意对数的书写格式.

  两个重要对数:

  ○1 常用对数:以10为底的对数 ;

  ○2 自然对数:以无理数 为底的对数的对数 .

  指数式与对数式的互化

  幂值 真数

  = N = b

  底数

  指数 对数

  (二)对数的运算性质

  如果 ,且 , , ,那么:

  ○1 + ;

  ○2 - ;

  ○3 .

  注意:换底公式: ( ,且 ; ,且 ; ).

  利用换底公式推导下面的结论:(1) ;(2) .

  (3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式

  (二)对数函数

  1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

  注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.

  ○2 对数函数对底数的限制: ,且 .

  2、对数函数的性质:

  a>100,则a可以是任意实数;

  排除了为0这种可能,即对于x0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  指数函数

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数无界。

  奇偶性

  定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

因篇幅问题不能全部显示,请点此查看更多更全内容