您的当前位置:首页初中数学分式知识点总结

初中数学分式知识点总结

2022-07-02 来源:飒榕旅游知识分享网

  1、通过猜想,验证,计算得到的定理:

  (1)全等三角形的判定定理:

  (2)与等腰三角形的相关结论:

  ①等腰三角形两底角相等(等边对等角)

  ②等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一)

  ③有两个角相等的三角形是等腰三角形(等角对等边)

  (3)与等边三角形相关的结论:

  ①有一个角是60°得等腰三角形是等边三角形

  ②三个角都相等的三角形是等边三角形

  ③三条边都相等的三角形是等边三角形

  (4)与直角三角形相关的结论:

  ①勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方

  ②勾股定理逆定理:在一个三角形中两直角边的平方和等于斜边的平方,那么这个三角形一定是直角三角形

  ③HL定理:斜边和一条直角边对应相等的两个三角形全等

  ④在三角形中30°角所对的直角边等于斜边的一半

  2、两条特殊线

  (1)线段的垂直平分线

  ①线段的垂直平分线上的点到线段两边的距离相等互为逆定理{

  ②到一条线段两个端点距离相等的点在这条线段的垂直平分线上

  ③三角形的三条垂直平分线交于一点,并且这一点到这三个顶点的距离相等

  (2)角平分线

  ①角平分线上的点到这个角的两边距离相等互为逆定理{

  ②在一个角的内部,并且到这个角的两边距离相等的的点,在这个角的角平分线上

  3、命题的逆命题及真假

  ①在两个命题中,如果一个命题的条件与结论是另一个命题的结论与条件,我们就说这两个命题互为逆命题,其中一个是另一个的逆命题

  ②如果一个定理的逆命题是真命题,那么他也是一个定理,我们称这两个定理为互逆定理

  ③反正法:从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件,定理相矛盾,矛盾的原因是假设不成立,所以肯定了命题的结论,使命题获得了证明

  第二章一元二次方程

  1、一元二次方程:只含有一个未知数X的整式方程,并且可以化成aX?+bX+C=0(a≠0)形式称它为一元二次方程

  aX?+bX+C=0(a≠0)→一般形式

  aX?叫二次项bX叫一次项C叫常数项a叫二次项系数b叫一次项系数

  2、一元二次方程解法:

  (1)配方法:(X±a)?=b(b≥0)注:二次项系数必须化为1

  (2)公式法:aX?+bX+C=0(a≠0)确定a,b,c的值,计算b?-4ac≥0

  若b?-4ac>0则有两个不相等的实根,若b?-4ac=0则有两个相等的实根,若b?-4ac<0则无解

  若b?-4ac≥0则用公式X=-b±√b?-4ac/2a注:必须化为一般形式

  (3)分解因式法

  ①提公因式法:ma+mb=0→m(a+b)=0

  平方差公式:a?-b?=0→(a+b)(a-b)=0

  ②运用公式法:{

  完全平方公式:a?±2ab+b?=0→(a±b)?=0

  ③十字相乘法

  例题:X?-2X-3=0

  1/111

  ×}X?的系数为1则可以写成{常数项系数为3则可写成{

  1/-31-3

  --------

  -3+1=-2交叉相乘在相加求值,值必须等于一次项系数

  (X+1)(X-3)=o

因篇幅问题不能全部显示,请点此查看更多更全内容