1、关于极限的知识点,首先当然是极限的定义了。数列的极限有ε-N定义:
设{an}为数列,a为定数. 若对任给的正数ε,总存在正整数N,使n>N(或n≥N)时,有|an -a|<ε(或|an-a|≤ε),则称数列{an}收敛于a,定数a称为数列{an}的极限,记作:lim(n->∞)an=a. 对应的还有数列发散的定义。
函数极限则有趋于无穷的定义:设f为定义在[a,+∞)上的函数,A为定数.若对任给的ε>0,存在正数M(≥a),使得当x>M时,有|f(x)-A|<ε,则称函数f当x趋于+∞时以A为极限,记作:lim(x->+∞)f(x)=A. 对应的有趋于负无穷和趋于无穷的定义。
另外,函数极限还有趋于x0的定义:设f在某空心邻域U(x0;δ’)内有定义, A为定数.若对任给的ε>0,存在正数δ(<δ’),使得当0<|x-x0|<δ时,有|f(x)-A|<ε,则称函数f当x趋于x0时以A为极限,记作:lim(x->x0)f(x)=A.
2、然后是极限的性质,不管是数列极限,还是函数极限,都有唯一性,有界性,保号性,保不等式性和迫敛性五个性质。以函数极限为例,唯一性比较好理解,就是极限是唯一的,不可以同时存在两个极限。其它四个性质分别为:
局部有界性:若lim(x->x0)f(x)存在,则f在x0的某空心邻域U(x0)内有界.
局部保号性:若lim(x->x0)f(x)=A>0(或<0), 则对任何正数r<A(或r<-A)存在U(x0)有:f(x)>r>0(或f(x)<-r<0)..
保不等式性:若lim(x->x0)f(x)与lim(x->x0)g(x)都存在,且在某邻域U(x0;δ’)内有:f(x)≤g(x),则lim(x->x0)f(x)≤lim(x->x0)g(x).
迫敛性:设lim(x->x0)f(x)=lim(x->x0)g(x)=A, 且在某U(x0;δ’)内有:f(x)≤h(x)≤g(x),则lim(x->x0)h(x)=A.
其它类型的极限性质类似,可自己模仿写出来。
数列极限和函数极限还有相同的四则运算法则,即:函数(或数列)和差积商的极限等于极限的和差积商,其中作为除数的函数(或数列)或极限不等于0。
3、接下来是极限存在的条件,即收敛的条件:
(1)单调有界定理:以数列极限为例,在实数系中,有界的单调数列收敛,且其极限是它的上(下)确界. 函数极限的单调有界定理只针对单侧极限。
(2)柯西收敛准则:以函数极限为例,设f在U(x0;δ’)内有定义。lim(x->x0)f(x)存在的充要条件是:任给ε>0,存在正数δ(≤δ’),使得对任何x’, x”∈U(x0;δ)有|f(x’)- f(x”)|<ε.
(3)函数极限与数列极限之间的桥梁,是归结原则:
设f在U(x0;δ’)内有定义。lim(x->x0)f(x)存在的充要条件是:对任何包含于U(x0;δ’)且以x0为极限的数列{xn}, lim(x->∞)f(xn)都存在且相等.
函数极限的单侧极限,即左极限和右极限,都有对应的归结原则。
关于极限存在的条件还有很多,但未必都是充要条件,只能靠平时学习中多加积累。
4、常用的极限。
最重要的是无穷小量,可以理解为等于0的极限。当两个无穷小量的比等于1时,我们就称它们为等阶无穷小量,可以在求极限时,进行等价替换。比如x和sinx是等阶无穷小量,记做x~sinx,或sinx~x.
有一些常用的等阶无穷小量必须牢记,其中最常用的有:x~sinx~tanx和x^2~(cosx)^2/2. 而 x~sinx更是构成了第一个重要极限lim(x->0)sinx/x=1. 要注意它与lim(x->∞)sinx/x的区别,后者是无穷小量与有界量的积,结果等于0.
第二个重要极限是:lim(x->∞)(1+1/x)^x=e,它还有数列极限的形式:lim(n->∞)(1+1/n)^n=e. 它涉及到一类未定式极限1^∞,只要是这种类型的极限,都与e有关。
与无穷小对应的是无穷大量,不过无穷大量的倒数就是无穷小量,所以我们可以把它们统一起来,求无穷大量有关的极限时,都可以先把无穷大量化为无穷小量来解。
5、最后一个问题是极限的应用。极限的应用非常广泛,我们在极限这一章中,主要是用它来求函数图像的渐近线。这方面的详细内容请自行补充。
因篇幅问题不能全部显示,请点此查看更多更全内容