二年级数学说出两个用4x3的解决问题

发布网友 发布时间:2022-04-23 17:49

我来回答

2个回答

热心网友 时间:2023-10-11 17:26

三个小伙伴每人四个棒棒糖,一共12个棒棒糖
四只猴子每只猴子三根香蕉,一共12根香蕉
如何学好数学

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我*,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

如何学好数学

学好数学的方法其实跟读其他科目没太大差别,流程上可区分为六个步骤:

1. 预习

2. 专心听讲

3. 课后练习

4. 测验

5. 侦错、补强

6. 回想

以下就每一个步骤提出应注意事项,提供同学们参考。

1. 预 习 : 在课前把老师即将教授的单元内容浏览一次,并留意不了解的部份。

2. 专心听讲:

(1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误。

若老师讲到你早先预习时不了解的那部份,你就要特别注意。

有些同学听老师讲解的内容较简单,便以为他全会了,然后分心去做别的事,殊不知漏听了最精彩最重要的几句话,那几句话或许便是日后测验时答错的关键所在。

(2)上课时一面听讲就要一面把重点背下来。定义、定理、公式等重点,上课时就要用心记忆,如此,当老师举例时才听得懂老师要阐述的要义。

待回家后只需花很短的时间,便能将今日所教的课程复习完毕。事半而功倍。只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什麼都不记得,白白浪费一节课,真可惜。

3. 课后练习 :

(1) 整理重点

有数学课的当天晚上,要把当天教的内容整理完毕,定义、定理、公式该背的一定要背熟,有些同学以为数学著重推理,不必死背,所以什麼都不背,这观念并不正确。一般所谓不死背,指的是不死背解法,但是基本的定义、定理、公式是我们解题的工具,没有记住这些,解题时将不能活用他们,好比医师若不将所有的医学知识、用药知识熟记心中,如何在第一时间救人。很多同学数学考不好,就是没有把定义认识清楚,也没有把一些重要定理、公式”完整地〃背熟。

(2) 适当练习

重点整理完后,要适当练习。先将老师上课时讲解过的例题做一次,然后做课本习题,行有余力,再做参考书或任课老师所发的补充试题。遇有难题一时解不出,可先略过,以免浪费时间,待闲暇时再作挑战,若仍解不出再与同学或老师讨论。

(3) 练习时一定要亲自动手演算。很多同学常会在考试时解题解到一半,就接不下去,分析其原因就是他做练习时是用看的,很多关键步骤忽略掉了。

4. 测验 :

(1) 考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。

(2) 考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢, 移项以及加减乘除都要小心处理,少使用“心算” 。

(3) 考试时,我们的目的是要得高分,而不是作学术研究,所以遇到较难的题目不要 硬干,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到最完美的演出。

(4) 考试时,容易紧张的同学,有两个可能的原因:

a. 准备不够充分,以致缺乏信心。这种人要加强试前的准备。

b. 对得分预期太高,万一遇到几个难题解不出来,心思不能集中,造成分数更低。这种人必须调整心态,不要预期太高。

5. 侦错、补强 :

测验后,不论分数高低,要将做错的题目再订正一次,务必找出错误处,修正观念,如此才能将该单元学的更好。

6. 回想:

一个单元学完后,同学们要从头到尾把整个章节的重点内容回想一遍,特别注意标题,一般而言,每个小节的标题就是该小节的主题,也是最重要的。将主题重点回想一遍,才能完整了解我们在学些什麼东西。

如何学好数学
漳州市第三中学 吴坚
一、什么是数学?
恩格思说:“纯数学的对象是现实世界的空间形式与数量关系。”数学包括纯粹数学、应用数学以及这两者与其它学科的交叉部分,它是一门集严密性、逻辑性、精确性和创造力与想象力于一体的学问,也是自然科学、技术科学、社会科学管理科学等的巨大智力资源。数学具有自己独一无二的语言系统——数学语言,数学具有独特的价值判断标准——独特的数学认识论。数学不仅是研究其它自然科学与社会科学的重要工具,它本身也是一种文化,数学从一个方面反映了人类智力发展的高度。数学有其自身的美,一些从事数学工作的人把数学看作是艺术。然而随着科学的不断发展,数学研究的对象已远远超过一般的空间形式和数量关系。数学的抽象性和应用性向两个极端同时有了巨大的发展。如果把抽象数学看成是“根”,把应用数学看成是“叶”,那么数学已是自然科学中的一棵枝繁叶茂的参天大树。
我们所处的时代是信息时代,它的一个重要特征是数学的应用向一切领域渗透,高科技与数学的关系日益密切,产生了许多与数学相结合的新学科。随着当今社会日益数学化,一些有远见的科学家就曾经深刻指出:“信息时代高科技的竞争本质上是数学的竞争。”
二、数学的应用
数学是科学的“王后”和“仆人”。按一般的理解,女王是高雅。权威和至尊至贵的,是阳春白雪,在科学中只有纯粹数学才具有这样的特点。简洁明了的数学定理一经证明就是永恒的真理,极其优美而且无懈可击。另一方面,科学和工程的各个分支都在不同程度上大量使用数学,享受着数学的贡献。这时数学科学就是仆人,英文书名中servant这个字在英文里有“供人们利用之物,有用的服务工具”的意思。这一提法巧妙地说明了数学在整个科学中的地位和作用,正确认识和理解数学科学的重要性对于发展科学、经济以及教育是十分重要的。
1、数学是其它学科的基础
无论是物理、化学、生物、还是信息、经济、管理等新兴学科甚至于人文学科的学习,数学方法都是必要的基础工具。过去人们一至认为,数学是科学和工程学的通用语言。你要向大家描述你的发现和成果,那么你就必须掌握数学、应用数学。而现在,上至天气预报,下至污水处理,甚至超市进货的周期、数量,公共交通线路的规划、设计都要用到数学。数学建模及相关的计算,正在成为工程设计的关键。就是过去很少用到数学的医学、生物等领域也有了很多的应用。如在心血管病的诊断方面,用上了流体力学的基本方程,做手术前可以用计算机模拟各种情况下可能出现的结果,作为诊断参考;神经科用数学来分析各种节律等。在生物DNA的研究中也大量地应用了数学知识,其双螺旋结构就是与几何相关的问题。
2、数学在其它领域的应用
20世纪最大的科学成就莫过于爱因斯坦的狭义和广义相对论了,但是如果没有黎曼于1854年发明的黎曼几何,以及凯莱,西勒维斯特和诺特等数学家发展的不变量理论,爱因斯坦的广义相对论和引力理论就不可能有如此完善的数学表述。爱因斯坦自己也不止一次地说过这一点。
计算的技艺——数值分析以及运算速度的问题(计算机的制造),牛顿、莱布尼兹、欧拉、高斯都曾给予系统研究,它们一直是数学的重要部分。在现代计算机的发展研制中数学家起了决定性的作用。莱布尼兹,贝巴奇等数学家都曾研制过计算机。20世纪30年代,符号逻辑的研究十分活跃,丘奇,哥德尔,波斯特和其他学者研究了形式语言。经过他们以及图灵的研究工作;形成了可计算性这个数学概念。1935年前后,图灵建立了通用计算机的抽象模型。这些成果为后来冯·诺伊曼和他的同事们制造带有存储程序的计算机,为形式程序的发明提供了理论框架。
表面看来,数学与人文科学,社会科*系并不是很紧密,毕竟一位作家没有必要绞尽脑汁去证明哥德*猜想,一位画家不需要懂得微积分的知识,实际上,人文科学也是不能脱离数学的,作为理性基础和代表的数学思想方法,数学精神被人们注入文学、艺术、*、经济、伦理、宗教等众多领域。
数学对社会科学、人文科学的作用,影响主要不是很直观的公式、定理,而是抽象的数学方法和数学思想,其中最突出的莫过于演绎方法,亦即演绎推理,演绎证明,就是从已认可的事实推导出新命题,承认这些作为前提的事实就必须接受推导出的新命题。哲学上,研究一些永恒的话题,诸如生与死等,这些课题是无法用简单归纳(反复试验法),类比推理来研究的,只能求助于数学方法——演绎推理。类似的例子还有很多,数学在一定程度上影响了众多哲学思想的方向和内容,从古希腊的毕达可拉斯学派哲学到近代的唯理论,经验论直到现代的逻辑证实主义,分析哲学等,都可以证明这一点。
数学还对音乐,绘画,语言学研究,文学批评理论产生了一定的影响。
在音乐方面,自从乐器的弦长和音调之间存在密切关系的事实被发现后,这项研究就从来没有中止过,美学上对黄金分割的研究也是一个不可或缺的话题。文艺复兴以前,绘画被看作同作坊工人一样低贱的职业,文艺复兴开始以后,画家们开始用数学原理如平面几何、三视图、平面直角坐标系等指导绘画艺术,达芬奇的透视论就是一个突出的例子(借助平面几何知识,达到绘画上所追求的视觉效果——远物变近,小物变大),从此,绘画步入了人类艺术的殿堂。
从实际应用来看,许多社会科学,人文科学也离不开数学。
在研究历史,*时,用到最多的方法就是统计,统计学在问世之初就被称作*数学,可见其地位之尊宠。
历史学的一大分支考古学更是离不开数学,如三角计算、指数函数、对数函数等。考古离不开物理,化学方法,但这两门学科缺少了作为工具的数学,将一无是处。
很多高中数学知识,如集合、映射、加法原理、乘法原理等在日常的工作和生活学习中“经常被用到”,而如概率分析、函数的极值与导数问题虽然在人们的日常生活中并不那么普遍,但却在现代经济发展中起着举足轻重的作用。
例如概率分析,也是应用数学的一门基础学科,它能通过研究各种不确定因素发生不同幅度变动的概率分布及其对方案的经济效果的影响,对方案的净现金流量及经济效果指标作出某种概率描述,从而能够对方案的风险情况作出比较准确的判断。因此,在实际工作中,如果能通过统计分析给出在方案寿命期内影响方案现金流量的不确定因素可能出现的各种状态及其发生概率,就可能过对各种因素的不同状态进行组合,求出所有可能出现的方案净现金流量序列及其发生概率,就可计算出方案的净现值、期望值与方差。
为了适用经济高速发展的需要,高中数学中相应加强函数内容的教学,增加概率统计、线性规划、数学模型等内容。

(接第75期)
3、学习数学的目的
作为一门基础学科,学数学不一定要成为数学家,更重要的是培养人的数学观念和数学思想,培养人解决数学问题的能力。数学的重要性不仅体现在数学知识的应用,更重要的是数学的思维方式。它对培养人的思维、创新、分析、计算、归纳、推理能力都有好处。学生进入社会后,也许很少直接用到数学中的某个公式和定理,但数学的思想方法,数学中体现出的精神,却是他终身受用的。
数学的思考方式有着根本的重要性。简言之。数学为组织和构造知识提供方法。一旦数学用于技术,它就能产生系统的、可再现的并能传授的知识。分析、设计、建模、模拟和应用便会成为可能,变成高效的富有结构的活动。也就是说能转化为生产力。但是,50年前数学虽然也直接为工程技术操供—些工具,但基本上是间接的。先促进其他科学的发展,再由这些科学提供工程原理和设计的基础。现在,数学和工程之间在更广阔的范围内和更深的层次上,直接地相互作用着,极大地推动了数学和工程科学的发展,也极大地推动了技术的进步。
20世纪后半叶最重要的科技进展之?是计算机、信息和网络技术的迅速发展。我们仅就计算机的运算速度来看,1946年公开展示的第一台计算机电子数学积分计算机的运算速度是每秒符点运算5,000次;现在已经达到每秒符点运算100亿次,据专家估计到2010年可达到一万亿次。可以想象现在计算机能完成的工作和50年前相比简直是不可同日而语。用来描述、研究各种实际问题产生了许许多多的数学模型。有的能求解出来,就能不同程度地解决问题。然而,当时算不出来、或者不能及时算出来,也就不能解决问题。现在,计算速度等技术指标在某种意义下远远走在前面了。数学建模和与之相伴的计算正在成为工程设计中的关键工具。科学家正日益依赖于计算方法。而且在选择正确的数学和计算方法以及解释结果的精度和可靠性方面必须具有足够的经验。我们看到的是各行各业都在大量应用数学和计算机等技术,通过数学建模、仿真等手段解决问题,并且把解决同类问题的方法和成果制作成软件(它们甚至是相当傻瓜化的),并进行销售。人们看到的正是这种数学应用大发展的景象,更确切地说是美国科学基金会数学部主任在评论数学科学成为五大创新项目之首时所说的,“该重大创新项目背后的推动力就是一切科学和工程领域的数学化。”当然也有不同认识,也有人认为不需要懂得很多数学,只要会用软件就行了。也有人认为现在不需要发展基础数学了,只要通过数学建模和计算加上物理的直观就可以解决问题了。特别是,有人认为现在的学生不需要那么多的数学了。这实在是极大的误解。
三、中学阶段如何提高数学成绩
1、培养兴趣,带好奇心学习。
学数学要爱数学。数学是美丽的,它的美体现在结论的简单明确,它是一种理性美和抽象美。数学就像一个花园,没进门时看不出它的漂亮可一旦走进去,就会感觉它真美。许多数学家都把兴趣放在学好数学的首要位置。其次是好奇心,学数学要有想法,要敢于去猜想,要带着好奇心去学数学。要从解题过程找乐趣,找成就感。只要好奇心和求知欲变成了解决问题的渴求,就能自觉的提高运用数学知识真正去解决问题的能力。只有对学习数学充满了乐趣,才能更自觉地学习和研究数学。
2、仔细看书,弄懂数学语言。
不爱读数学教科书,是中学生的“通病”。数学教科书是用数学语言写它成包括文字语言、符号语言、图形语言。它语言简洁、逻辑性强、内涵丰富、含义深刻,因而看数学教科书切不可浮光掠影,一目十行。
数学概念、定义、定理等都用文字语言表述,看书时务必留心。预习时要做到“五要”:①要用波浪线划出重点;②要将公式及结论做记号;③要在看不懂、有疑问的地方用铅笔画问号;④要将简单习题的答案、解题要点写在后面;⑤如果定义、定理中的条件不止一个,就要把条件编上号码。
符号语言有丰富的内涵,要写得出,辩得清、记得牢。读符号语言,要说得出它的涵义,辩得明它的特征。
图形语言既能反映元素的相对位置,又是数量关系的直接反映。因而观看几何图形时要读懂隐藏在图形元素之间的内在联系及数量关系;而观看图像,要从其形状窥视出函数的性质。
如果课前、课后阅读数学书能达到上述要求,学数学也就入门了;若由此养成读书的良好习惯,提高成绩则指日可待。
3、认真听课,掌握思维方法。
听课要全神贯注,随着老师的讲解积极思维。预习时似懂非懂的概念弄明白了么?疑团化解了么?老师口授的真知灼见、补充的例题、精彩的解法,要抓紧记录下来。写好听课笔记,不但留下一份宝贵的资料,而且也能促使自己注意力集中。
听课时还要做到不断生疑、质疑,敢于提问、答问。要想想老师的讲解是否完整无误,解法是否严谨无瑕。板书的范例如果懂了,就应思谋新的解法;如果有疑点就应大胆质疑。争着回答问题绝不是“图表现”,而是阐述自己的见解,提高自己的口头表达能力。即使自己回答错了,将问题暴露后,也便于订证。听课最忌盲从,随波逐流,人云亦云,不懂装懂。
4、钻研,学会归纳总结。
养成良好的钻研学习的习惯必须做到:
①按时完成作业,巩固所学知识。作业惟有按时完成,才能得以巩固知识,尽量减少遗忘。而在完成作业的过程中,将增大知识复现率,促进自己的思考力,发挥解决问题的创造力。
善于学习的同学还应注意作业的保洁与收藏,因为这既是珍视自己的劳动成果,也是很好的复习资料。
②适时复习功课,形成知识网络。章节复习、单元复习、迎考复习等是数学学习不可或缺的一部份,它有承前启后的作用。复习时应按照一定的系统归纳总结知识,总结方法,形成数学的“经纬网”。这里的“经”指的是数学的各个分支的知识;“纬”指的是相同的数学方法在不同分支中的应用。要想学好数学就必须织好数学的“经纬网”。
③应注重书写的规范化。数学学科是一门专业性很强的学科,它对表达、叙述的过程,符号使用的规定都有严格的要求。因而在做练习、作业、考试时书写都应规范化。
④运用所学知识,不断开拓创新。数学有很强的联贯性,新旧知识之间并没有不可逾越的鸿沟。因此借书本知识,进行联想,不但可以增强钻研兴趣,而且能培养自己的创造性思维能力。
注意了以上几种做法,不但可以巩固原有的知识,而且扩展了自己的知识领域,沟通了数学知识之间的内在联系。有了良好的钻研习惯,定能学好数学。

热心网友 时间:2023-10-11 17:26

知识点概括总结
1.长度单位:是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。其国际单位是“米”(符号“m”),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。
2.米:国际单位制中,长度的标准单位是“米”,用符号“m”表示。
3.分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。
4.厘米:厘米,长度单位。简写(符号)为:cm.
有关厘米的单位转换: 1厘米=10毫米=0.1分米=0.01米=0.00001千米。
5.毫米:英文缩写MM(或mm、㎜)
进率关:1毫米=0.1厘米;
6.进位:加法运算中,每一数位上的数等于基数时向前一位数进一。
以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。
在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。
7.不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34。6能够减去2,所以不用向高位5借位。
8.退位减:减法运算中必须向高位借位的减法运算。例:51-22=39.
1不能够减去2,所以必须向高位的5借位。
9.连加:多个数字连续相加叫做连加。例如:28+24+23=85.
10.连减:多个数字连续相减叫做连减。例如:85-40-26=19.
11.加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70。
12.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
符号 :∠
13.乘法算式中各数的名称:是指将相同的数加法起来的快捷方式。其运算结果称为积。
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
10(因数) ×(乘号) 200(因数) =(等于号) 2000(积)
14.1—6的乘法口诀
1×1=1
1×2=22×2=4
1×3=32×3=63×3=9
1×4=42×4=83×4=124×4=16
1×5=52×5=103×5=154×5=205×5=25
1×6=62×6=123×6=184×6=245×6=306×6=36
15.7——9的乘法口诀
1×7=72×7=143×7=214×7=285×7=356×7=427×7=49
1×8=82×8=163×8=244×8=325×8=406×8=487×8=568×8=
1×9=92×9=183×9=274×9=365×9=456×9=547×9=638×9=729×9=81
扩展资料:
1.角的动态定义
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
2.角的种类
角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
锐角:大于0°,小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!
3.乘法的运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
二年级下册
知识点概括总结
1.表内除法的知识点:
(1)理解平均分的意义。会根据表内乘法,计算简单的除法。
(2)会用乘法口诀求商。
(3)根据乘除法的意*决一些简单的乘除法应用题。
(4)被除数÷除数=商 被除数÷商=除数 除数×商=被除数
2.除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
3.除法的性质
一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)
4.除法公式
(1)被除数÷除数=商
(2)被除数÷商=除数
(3)除数×商=被除数
5.被除数
除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数
6.除数:在除法算式中,除号后面的数叫做除数。
例:8÷2=4则2为除数。8为被除数。除数不能为0,否则没有意义。
7.商:在一个除法算式里,被除数÷除数=商+余数,进而推导得出:商×除数+余数=被除数。
8.完全商
当数a除以数b(非0)能除得尽时,这时的商叫完全商。如:9÷3=3,3就是完全商。
9.不完全商
如果数a除以数b(非零)除不尽,得到的商就是不完全商。如:10÷3=3......1,这里的3就是不完全商。
10.被除数和商的关系
被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。
除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
11.2—6的乘法口诀
2×2=4
2×3=63×3=9
2×4=83×4=124×4=16
2×5=103×5=154×5=205×5=25
2×6=123×6=184×6=245×6=306×6=36
12.直角:几何原本中的定义:当一条直线和另一条横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角,而且称这一条直线垂直于另一条直线。
一个直角等于90度,符号:Rt∠
13.几何中的锐角:大于0°小于90°(直角)的角。
两个锐角相加不一定大于直角,但一定小于平角。
14.钝角:钝角大于直角(90°)小于平角(180°)的角叫做钝角。
15.平移:平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。平移不改变图形的形状和大小。平移可以不是水平的。
16.旋转:在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。
17.旋转的性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
(3)旋转前、后的图形全相等。
18.旋转的三要素
(1)旋转中心;
(2)旋转方向;
(3)旋转角度。
注意:三要素中只要任意改变一个,图形就会不一样。
旋转变换是由一个图形改变为另一个图形,在改变过程中,原图上所有的点都绕一个固定的点换同一方向,转动同一个角度
19.表内除法的知识点:
(1)理解平均分的意义。会根据表内乘法,计算简单的除法。
(2)会用乘法口诀求商。
(3)根据乘除法的意*决一些简单的乘除法应用题。
(4)被除数÷除数=商被除数÷商=除数 除数×商=被除数
20.7、8、9的乘法口诀
7×7=49
7×8=568×8=
7×9=638×9=729×9=81
21.万以内的数的认识
100=10个10(10个10相加的结果等于100)
1000=10个100(10个100相加的结果等于1000)
22.克
克为质量单位,符号 g,相等于千分之一千克。一克的重量大约相于一立方厘米水在室温的质量,大约有一个万字夹的质量。
1 吨 = 1,000,000 克 (一百万克)
1 公斤(1千克) = 1,000 克 (一千克)
1 市斤 = 500克 (1 克 = 0.002市斤)
1 毫克 = 0.001 克 (1克=1000毫克)
1 微克 = 0.000 001 克 (1克=1000000微克)
1 纳克 = 0.000 000 001 克(1克=1000000000纳克)
23.千克
千克:(符号kg或㎏)为国际单位制中量度质量的基本单位,千克也是日常生活中最常使用的基本单位之一。
倘若孩子心思没放在学习上,
任凭家长们怎样努力都是无济于事的!
那你有没有方法让孩子喜欢课堂呢?
当然有,孩子喜欢老师,就喜欢课堂!
喜欢课堂,就能出成绩!
寓教于乐得过程,让孩子爱上课堂!
触类旁通
学生对于数学学习呈现明显不同的两种状态,擅长逻辑思维的孩子总能从中洞察种种规律,而另外一部分孩子就显得很吃力。数学教学工作旨在带领孩子探寻数学的乐趣并能从中掌握独有的解题思维,怎样的课程才最有效果呢?举一反三、触类旁通才是我们的目的,一个学科的积淀能渗透到种种学科,这才是真正的成长!
激发兴趣,培养习惯
新舟针经过大量调研和反复研讨,完善了一套非常高效的数学教学体系。课程旨在激发兴趣,我们通过有趣的讲义设计、丰富的课堂活动设计让孩子们探寻学习乐趣。另一方面,还将从培养习惯入手,从课前、课中、课后关注孩子预习习惯、笔记习惯、复习习惯、反思习惯等,让孩子因习惯而优秀。
2019暑假,新舟开放数学暑期名师班,仅针对新二年级,新舟中小学12家校区同步开放,
数学教学优势
1、立足校内,顶层设计严格遵循课标、课本要求进行设计;
2、精准定位小升初,拆解小升初试卷,1-4专项基础知识学会,5年级专项突破+真题模拟;
3、重原理探究,通过课堂活动让孩子感知原理形成的过程,进而归纳、总结原理;
4、重效果,根据学情,由浅入深,重课上吸收,抓课后落实!

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com