发布网友 发布时间:2022-04-22 19:15
共1个回答
热心网友 时间:2023-10-25 22:29
1、a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
2、b和a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
3、c决定抛物线与y轴交点,抛物线与y轴交于(0,c)
如:y=2x^2+5x+6
即y=2(x+5/4)^2+23/8,开口向上。
一般地,把形如y=ax²+bx+c(a≠0) (a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
扩展资料:
一、决定位置因素
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a<0,b<0);当对称轴在y轴右时,a与b异号(即a0或a>0,b<0)(ab<0)。
事实上,b有其自身的几何意义:二次函数图象与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
二、决定交点因素
常数项c决定二次函数图像与y轴交点。
二次函数图像与y轴交于(0,C)点
注意:顶点坐标为(h,k), 与y轴交于(0,C)。
参考资料来源:百度百科-二次函数