已知二次函数y=x²-4x+3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D。

发布网友 发布时间:2022-04-22 19:13

我来回答

2个回答

热心网友 时间:2023-11-16 14:32

在平面直角坐标系中,二次函数y=-X2+4x+5的图像交x轴与点A,B(点A在点B的右边),交y轴于点C,顶点为P,点M是射线OA上的一个动点(不与点O重回),点N是x轴负半轴上的一点,NH垂直CM,交CM(或CM的延长线)于点H,交y轴于点D,且ND=CM. 1。求证:OD=OM. 2.设OM=t,当t为何值时以C,M,P为顶点的三角形是直角三角形。 3.问:当点M在射线OA上运动时,是否存在实数t,使直线NH与以AB为直径的圆相切?若存在,请求出相应的t值;若不存在,请说明理由。

(1)证明:由题意得A(5,0),B(-1,0),C(0,5),P(2,9)
设M(x0,0)(x0>0),N(x1,0)(x1<0)
∴MC方程:y=-5/x0*x+5
∵NH⊥MC
∴NH方程:y=x0/5*(x-x1)
∴D(0,-x0x1/5)
|OM|^2=x0^2
|OD|^2=x0^2*x1^2/25
∵ND=MC
ND^2=x1^2+ x0^2*x1^2/25:MC^2=x0^2+25
∴x1^2+ x0^2*x1^2/25= x0^2+25
X1^2[(25+x0^2)/25]=x0^2+25= ==>x1^2=25==>|OD|^2=x0^2
∴|OM|^2=x0^2=|OD|^2==>OM=OD
(2)解析:设OM=t,M(t,0)
∵P(2,9), C(0,5)
向量MC=(-t,5), 向量PC=(-2,-4)
向量MC*向量PC =2t-20=0==>t=10
∴当t=10时,以C,M,P为顶点的三角形是直角三角形
(3)假设t存在
以AB为直径的圆为:(x-2)^2+y^2=9,圆心为F(2,0)
显然当t=2时,满足题目要求
即M(2,0)
MC过圆心,交圆于H,则过H作HN⊥MC交X轴于N
∴HN必为圆的切线
∴满足题目要求的t=2存在。

热心网友 时间:2023-11-16 14:32

x2-4x+3=0
求出两个解x1=1 x2=3
因为A在B左边
A(1,0)B(2,-1)c(0,3)顶点式求出D(2,-1)
S四边形=5

当P点y坐标是C点y坐标三倍时,S△PAB=3S△CAB
另y=3*3=9,9+11=(x-2)^2,解得:x1=2-根号10,x2=2+根号10
故P点坐标:(2-根号10,9)和(2+根号10,9)

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com