发布网友 发布时间:2022-04-24 04:31
共2个回答
热心网友 时间:2023-10-28 06:16
满足不全为零的一组数k1,k2,k3使得k1α1+k2α2+k3α3=0,则函数组是线性相关的。
函数线性相关的定理:
1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
2、一个向量线性相关的充分条件是它是一个零向量。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、n+1个n维向量总是线性相关。(个数大于维数必相关)
扩展资料:
线性相关函数的注意事项:
1、对于任一向量组而言,,不是线性无关的就是线性相关的。
2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0,,则说A线性无关。
3、包含零向量的任何向量组是线性相关的。
4、含有相同向量的向量组必线性相关。
5、增加向量的个数,不改变向量的相关性。
参考资料来源:百度百科-线性相关
热心网友 时间:2023-10-28 06:17
假设有不全为0的数a,b,c使得asin2t+bsint+ccost=0,求导得
2acos2t+bcost-csint=0,再求导得
-4asin2t-bsint-ccost=0,在三个表达式中令t=0得
c=0,2a+b=0,c=0;
令t=pi/2得b=0,-2a-c=0,-b=0;
最后解得a=b=c=0,因此无关。
热心网友 时间:2023-10-28 06:16
满足不全为零的一组数k1,k2,k3使得k1α1+k2α2+k3α3=0,则函数组是线性相关的。
函数线性相关的定理:
1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
2、一个向量线性相关的充分条件是它是一个零向量。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、n+1个n维向量总是线性相关。(个数大于维数必相关)
扩展资料:
线性相关函数的注意事项:
1、对于任一向量组而言,,不是线性无关的就是线性相关的。
2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0,,则说A线性无关。
3、包含零向量的任何向量组是线性相关的。
4、含有相同向量的向量组必线性相关。
5、增加向量的个数,不改变向量的相关性。
参考资料来源:百度百科-线性相关
热心网友 时间:2023-10-28 06:17
假设有不全为0的数a,b,c使得asin2t+bsint+ccost=0,求导得
2acos2t+bcost-csint=0,再求导得
-4asin2t-bsint-ccost=0,在三个表达式中令t=0得
c=0,2a+b=0,c=0;
令t=pi/2得b=0,-2a-c=0,-b=0;
最后解得a=b=c=0,因此无关。
热心网友 时间:2023-10-28 06:16
满足不全为零的一组数k1,k2,k3使得k1α1+k2α2+k3α3=0,则函数组是线性相关的。
函数线性相关的定理:
1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
2、一个向量线性相关的充分条件是它是一个零向量。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、n+1个n维向量总是线性相关。(个数大于维数必相关)
扩展资料:
线性相关函数的注意事项:
1、对于任一向量组而言,,不是线性无关的就是线性相关的。
2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0,,则说A线性无关。
3、包含零向量的任何向量组是线性相关的。
4、含有相同向量的向量组必线性相关。
5、增加向量的个数,不改变向量的相关性。
参考资料来源:百度百科-线性相关
热心网友 时间:2023-10-28 06:17
假设有不全为0的数a,b,c使得asin2t+bsint+ccost=0,求导得
2acos2t+bcost-csint=0,再求导得
-4asin2t-bsint-ccost=0,在三个表达式中令t=0得
c=0,2a+b=0,c=0;
令t=pi/2得b=0,-2a-c=0,-b=0;
最后解得a=b=c=0,因此无关。
热心网友 时间:2023-10-28 06:16
满足不全为零的一组数k1,k2,k3使得k1α1+k2α2+k3α3=0,则函数组是线性相关的。
函数线性相关的定理:
1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
2、一个向量线性相关的充分条件是它是一个零向量。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、n+1个n维向量总是线性相关。(个数大于维数必相关)
扩展资料:
线性相关函数的注意事项:
1、对于任一向量组而言,,不是线性无关的就是线性相关的。
2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0,,则说A线性无关。
3、包含零向量的任何向量组是线性相关的。
4、含有相同向量的向量组必线性相关。
5、增加向量的个数,不改变向量的相关性。
参考资料来源:百度百科-线性相关
热心网友 时间:2023-10-28 06:17
假设有不全为0的数a,b,c使得asin2t+bsint+ccost=0,求导得
2acos2t+bcost-csint=0,再求导得
-4asin2t-bsint-ccost=0,在三个表达式中令t=0得
c=0,2a+b=0,c=0;
令t=pi/2得b=0,-2a-c=0,-b=0;
最后解得a=b=c=0,因此无关。