数学家爱的故事

发布网友 发布时间:2022-04-24 04:43

我来回答

3个回答

热心网友 时间:2023-07-30 16:03

1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德*猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德*猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德*猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(A�Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。

高斯
印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。

《自学成才的数学家》华罗庚小时候很有数学天份,但家庭遭变故,只得停学看店,靠自学成为了数学家……

高斯
印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。

华罗庚一生都是在国难中挣扎。他常说他的一生中曾遭遇三大劫难。自先是在他童年时,家贫,失学,患重病,腿残废。第二次劫难是抗日战争期间,孤立闭塞,资料图书缺乏。第三次劫难是“文化大*”,家被查抄,手槁散失,禁止他去图书馆,将他的助手与学生分配到外地等。在这等恶劣的环境下,要坚持工作,做出成就,需付出何等努力,需怎样坚强的毅力是可想而知的.
早在40年代,华罗庚已是世界数论界的领袖数学家之一。但他不满足,不停步,宁肯另起炉灶,离开数论,去研究他不熟悉的代数与复分析,这又需要何等的毅力寻勇气!

华罗庚善于用几句形象化的语言将深刻的道理说出来。这些语言简意深,富于哲理,令人难忘。早在 SO年代,他就提出“天才在于积累,聪明在于勤奋”。 华罗庚虽然聪明过人,但从不提及自己的天分,而把比聪明重要得多的“勤奋”与“积累”作为成功的钥匙,反复教育年青人,要他们学数学做到“拳不离手,曲不离口”,经常锻炼自己。50年代中期,针对当时数学研究所有些青年,做出一些成果后,产生自满情绪,或在同一水平上不断写论文的倾问,华罗庚及时提出:“要有速度,还要有加速度。”所谓“速度”就是要出成果,所谓‘加速度”就是成果的质量要不断提高。“文化大*”刚结束的,一些人,特别是青年人受到不良社会风气的影响,某些部门,急于求成,频繁地要求报成绩、评奖金等不符合科学规律的做法,导致了学风败坏。表现在粗制滥造,争名夺利,任意吹嘘。 1978年他在中国数学会成都会议上语重心长地提出:“早发表,晚评价。”后来又进一步提出:“努力在我,评价在人。”这实际上提出了科学发展及评价科学工作的客观规律,即科学工作要经过历史检验才能逐步确定其真实价值,这是不依赖人的主观意志为转移的客 观规律。”

华罗庚从不隐讳自己的弱点,只要能求得学问, 他宁肯暴露弱点。在他古稀之年去英国访问时,他把成语“不要班门弄斧”改成“弄斧必到班门”来鼓励自己。实际上,前一句话是要人隐讳缺点,不要暴露。华罗庚每到一个大学,是讲别人专长的东西,从而得到帮助呢,还是对别人不专长的,把讲学变成形式主义走过场?华罗庚选择前者,也就是“弄等必到班门”。早在50年代,华罗庚在《数论导引》的序言里就把搞数学比作下棋,号召大家找高手下,即与大数学家较量。中国象棋有个规则,那就是“观棋不语真君子,落子无悔大丈夫”。1981年,在淮南煤矿的一次演讲中,华罗康指出:“观棋不语非君子,互相帮助;落子有悔大丈夫,改正缺点。”意思是当你见到别人搞的东西有毛病时,一定要说,另一方面,当你发现自己搞的东西有毛病时,一定要修正。这才是“君子”与“丈夫”。针对一些人遇到困难就退缩,缺乏坚持到底的精神,华罗庚在给金坛中学写的条幅中写道:“人说不到黄河心不死,我说到了黄河心更坚。”

人老了,精力要衰退,这是自然规律。华罗庚深知年龄是不饶人的。1979年在英国时,他指出:“村老易空,人老易松,科学之道,戒之以空,戒之以松,我愿一辈子从实以终。”这也可以说是他以最大的决心向自己的衰老作抗衡的“决心书”,以此鞭策他自己。在华罗索第二次心肌梗塞发病的,在医院中仍坚持工作,他指出:“我的哲学不是生命尽量延长,而是昼多做工作。”生病就该听医生的话,好好休息。但他这种顽强的精神还是可贵的。

总之,华罗庚的一切论述都贯穿一个总的精神,就是不断拼搏,不断奋进。

祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。

我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。 公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。 祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。

尽管当时社会十分*不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。

祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。
在我国北宋时代,有一位博学多才、成就显著的科学家,他就是沈括(1031~1095)。

沈括,字存中,宋仁宗天圣九年(公元1031年)生于浙江钱塘(今浙江杭州市)一官僚家庭。他的父亲沈周(字望之)曾在泉州、开封、江宁做过地方官。母亲许氏,是一个有文化教养的妇女。

沈括自幼勤奋好读,在母亲的指导下,十四岁就读完了家中的藏书。后来他跟随父亲到过福建泉州、江苏润州(今镇江)、四川简州(今简阳)和京城开封等地,有机会接触社会,对当时人民的生活和生产情况有所了解,增长了不少见闻,也显示出了超人的才智。

沈括精通天文、数学、物理学、化学、生物学、地理学、农学和医学;他还是卓越的工程师、出色的军事家、外交家和*家;同时,他博学善文,对方志律历、音乐、医药、卜算等无所不精。他晚年所著的《梦溪笔谈》详细记载了劳动人民在科学技术方面的卓越贡献和他自己的研究成果,反映了我国古代特别是北宋时期自然科学达到的辉煌成就。《梦溪笔谈》不仅是我国古代的学术宝库,而且在世界文化史上也有重要的地位。

日本数学家三上义夫曾经说:沈括这样的人在全世界数学史上找不到,只有中国出了这么一个。英国著名科学史专家李约瑟博士称沈括的《梦溪笔谈》是中国科学史上的坐标。

高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。

高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。

高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。

瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在*宫廷供职。

有一次,*女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。

第二天,在宫廷上,欧拉朝狄德罗走去,用一种非常肯定的声调一本正经地说:“先生,,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。周围的人报以纵声大笑,使这个可怜的人觉得受了羞辱。他请求女皇答应他立即返回法国,女皇神态自若地答应了。

就这样,一个伟大的数学家用欺骗的手段“战胜”了一个伟大的哲学家。

拉普拉斯和拉格朗日是19世纪初法国的两位数学家。拉普拉斯在数学上十分伟大,在*上却是一个十足的小人,每次政权更迭,他都能够见风使舵,毫无*操守可言。拉普拉斯曾把他的巨著《天体力学》献给拿破仑。拿破仑想惹恼拉普拉斯,责备他犯了一个明显的疏忽:“你写了一本关于世界体系的书,却一次也没有提到宇宙的创造者——上帝。”

拉普拉斯反驳说:“陛下,我不需要这样一个假设。”

当拿破仑向拉格朗日复述这句话时,拉格朗日说:“啊,但那是一个很好的假设,它说明了许多问题。”

两个神童19世纪初,在大西洋两岸出现了两个神童:一个是英国少年哈密顿,另一个是美国孩子科尔伯恩哈密顿的天才表现在语言学上,他8岁时就已经掌握了英文、拉丁文、希腊文和希伯莱文;12岁时已熟练地掌握了波斯语、阿拉伯语、马来语和孟加拉语,只是由于没有教科书,他才没有学习汉语。科尔伯恩则在数学上表现出神奇的天才,小时候,有人问他4294967297是否是素数时,他立刻回答不是,因为它有1作为除数。类似的例子多得不胜枚举,但他不能解释他得出正确结论的过程。

人们把两个神童带到一起,这次会面是奇妙的,现在已经无法确知他们交谈了什么,但结果却是完全出人意料的:科尔伯恩的数学天赋完全“移植”给了哈密顿;哈密顿放弃了语言学,投身数学,成为爱尔兰历史上最伟大的数学家。

至于科尔伯恩,他的天才渐渐消失了。

数学家之死挪威数学家阿贝尔22岁的时候就对数学的发展做出了重大的贡献,但并不为当时的数学界所接受。他过着穷困潦倒的生活,这严重地影响了他的健康,他得了肺结核,这在当时是绝症。在最后的几个星期,他一直在考虑他的未婚姐的未来。他写信给他最好的朋友基尔豪:“她并不美丽,有着一头红发和雀斑,但她是一个可爱的女子。”虽然基尔豪和肯普从未见过面,但阿贝尔希望他们两个能够结婚。

肯普小姐照料阿贝尔度过了生命的最后时刻。在葬礼上,她与专程赶来的基尔豪相遇了。基尔豪帮助她克服了悲伤,他们相爱并结了婚。正如阿贝尔所希望的那样,基尔豪和肯普婚后十分幸福,他们经常到阿贝尔墓前去怀念他。随着岁月的流逝,他们发现越来越多的人从各地赶来,为阿贝尔在数学上的贡献向他表达他们迟到的敬意,而他们只是这一朝圣队伍中的一对普通的朝圣者。

1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。他知道对手的*法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。

他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一个极为重要的分支——群论。

第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。

数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。

费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。

在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过

热心网友 时间:2023-07-30 16:03

苏菲的丈夫是莫斯科大学的古生物学教授,可是苏菲却找不到任何可以运用自己学问的地方。她好多年不接触数学,生活在贵族知识分子圈里,她花时间在为报章写文章、诗歌、戏剧批评以及一部小说。她通过写作鼓吹男女应该平等的思想,呼吁妇女本身应该努力争取享受高等教育。

有三年苏菲没有给维尔斯特拉斯教授写一封信,而她的老师还是对她很关心,希望她能继续搞数学。他写了几封信给她,其中一封有这样写道:“……车比雪夫刚来拜访我,他说你已经放弃数学了,我希望这是谣言。……我很久以前写了几封长信给你,不知你收到吗?我的地址照旧,他们可以转给我。”

车比雪夫(P.L.Cebysev 1821—14)是*19世纪的大数学家在素数分布的问题上有很大的贡献。他是*科学院院士,想安排苏菲在*大学教书,可是不能成功。苏菲因为车比雪夫的再三恳求不要放弃搞数学,才重理数学。1880年她曾向*教育部请求应考俄罗斯学位,可是没被批准。

在1878年她生下一个女儿,由于丈夫牵涉的几宗生意都失败了,经济开始困难。她从她父亲庄园得来的微小收入,不够扶养他们母女。于是她提笔给维尔斯特拉斯教授,希望能帮她获得一个职业。

她急着知道自己老师的意见,等不及他的回信,苏菲就动身到柏林去。维尔斯特拉斯指导她对光在晶液折射作研究,苏菲重新从事科学和数学上的研究工作了。在1883年,她在奥德赛的科学大会上作为唯一的女科学家报告她的研究成果。

1883年春天,苏菲在巴黎听到她丈夫自杀,她非常的悲恸,把自己关起来不吃不喝过了4天,第五天她失去知觉,第六天她苏醒后要求纸和笔,然后在上面写些数学公式和作些计算,她要用研究来摆脱痛苦。

维尔斯特拉斯有一个学生是瑞典人叫米达。列弗勒(Mitag—Leffler),他对苏菲的才能很赏识。在1881年,瑞典的首都斯德哥尔摩开办了一所新大学,由他领导数学系。他费了很大周折才使斯德哥尔摩当局决定聘请苏菲担任这新大学的讲师。在1883年11月苏菲迁居至斯德哥尔摩。当地的《民主报》用下面几句话报导她的来临:

“今天我们不是报导某一个庸俗王子的抵达……科学公主柯瓦列夫斯基夫人光临到我们的城市,她将是全瑞典的第一位女讲师。”

可是还有一些保守的人以敌视态度对待她。如瑞典作家特林倍格写文章说女人担任数学教授是奇怪的、有害的、难堪的现象。苏菲以大无畏的精神,对这些批评置之度外,第一年她用德语教授偏微分方程理论,学期完后学生对她教学的成功而向她祝贺,并和她拍集体相留作纪念。第二年以后她就能用瑞典语讲书了。

热心网友 时间:2023-07-30 16:04

�有一个数学家,他是专门研究数列的。
什么是数列?
比如1 2 4 _ 16中间的空格要填什么?
答案是8。这就是一个简单的数列题。这个数学家,就专门出这种题目,用来考察人的智商。
他出题,同时也研究答案。有意思的是,他发现了所有的答案都能归结到三种基本类型。
第一类最常见,有错有对。错的那些,都是可以相见的错误,这类人智商正常,比如你我。
第二类很少见,全对。这些人和出题人的思路达到了完美一致,那他们是否就是智商最高呢?等等。让我们再看看第三类。
第三类非常罕见。和第一类一样,他们也有错有对,但奇怪的是,这些错误都非常低级,根本是他们这个智商不该犯的。
这个数学家对第三类人产生了浓厚的兴趣。为什么他们会犯这样低级可笑的错误?于是他找来其中一些人,问他们为什么会写下这些稀奇古怪的答案。
而这些人的回答让他震惊不已。
我们的答案没有错啊!
说着,那些人拿出纸和笔,演示给他看。数学家惊异地发现,原来他所给的并非唯一答案,按照这些答题者的解释,这个空格填入其他数字照样成立。这些答题者的思路宛如踏上跳板,他们跳过眼下简单的解释,而奔向另一个更为复杂的逻辑关系,而那种复杂的关系完全可以使数列继续下去。
数学家被深深震撼了。
不光是因为他看到了有人比他想的更多,更因为他看见了自己原先思想的局限性。同一个问题——即便是在数学领域,依然有数种解答同时成立。接下来就出现一个让他更疑惑的问题:为什么大多数人选择这种答案而非另一种?是人类心理中固有的趋利避害性吗?那又是什么导致人类在做最初的选择时,会倾向选择最简单,最直接的答案?这是人类的本能,还是文化历史进程的结果?
要探求这个问题,就要了解人类在非理性思维下,是否还会做这样的简单性选择。
数学家找到了一群特殊的人作为他的考察对象。
这群人就是精神病人。
他探访精神病院,给那些切除脑白质的病人做他的序列题;参加梦游患者集会;研究被催眠者在催眠状态下写下的符号或文字——他狂热地寻求着宇宙的*,直到几乎迷失了自我。
这期间他向一个女人求过婚。
在对方还没有答应前,他出了车祸。醒过来后,他的双腿被截肢。
他没有告诉那个女人。
令朋友欣慰的是,失去双腿的他似乎并未丧失对数列研究的热情,他坐着轮椅,依然到处参加精神病人的集会。研究取得了很大的进展,数学家只剩下最后一个问题,怎么寻找一个大脑死亡但没有丧失运动神经元功能的对象。
看着自己空荡荡的裤管,数学家突然意识到,自己就是一个最好的研究对象。他专研数列四十年,即使他脑死亡了,那些对数字最原始的认知仍然会如烙印印刻在大脑皮层。他相信,即使自己成了植物人,写出来的依然会是数列。
可是,即使是用最小的子弹,爆炸时残留的碎片依然有可能伤及运动神经。在数学家苦恼的时候,他突然看见了装修工人手中的钉*。
在嘱托好朋友后,他拿起了钉*。
干净利落。
如他事先预料的,每天到了下午三点——他平时工作的时间——植物人数学家的手会自动开始书写。
随着身体逐渐衰败,他的字迹也越来越模糊。
可他的朋友依然能读懂他写的字。
因为直到最后,他写的内容都没有变过。他反复写着的,只有四个字母。在他生命最后的几年,他没有写过一个符号或数列。
他不停写着的,是一个女人的名字。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com