发布网友 发布时间:2022-04-24 03:34
共1个回答
热心网友 时间:2023-10-25 05:29
1、现有4个全等的直角三角形纸板,你能用它们来拼证勾股定理吗?若能,说明你的思路和方法,方法越多越好(至少要写出四种方法).
2、将等边三角形分割成三个全等的图形,请画出三种不同的分割方法.
3、
阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.
求证:AB=CD.
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.
证明:方法一:作BF⊥DE于点F,CG⊥DE于点G.
∴∠F=∠CGE=90°.
又∵∠BEF=∠CEG,BE=CE,
∴△BFE≌△CGE.
∴BF=CG.
在△ABF和△DCG中,∵∠F=∠DGC=90°,∠BAE=∠CDE,BF=CG,
∴△ABF≌△DCG.
∴AB=CD.
方法二:作CF∥AB,交DE的延长线于点F.
∴∠F=∠BAE.
又∵∠ABE=∠D,
∴∠F=∠D.
∴CF=CD.
∵∠F=∠BAE,∠AEB=∠FEC,BE=CE,
∴△ABE≌△FCE.
∴AB=CF.
∴AB=CD.
方法三:延长DE至点F,使EF=DE.
又∵BE=CE,∠BEF=∠CED,
∴△BEF≌△CED.
∴BF=CD,∠D=∠F.
又∵∠BAE=∠D,
∴∠BAE=∠F.
∴AB=BF.
∴AB=CD.
4、
如图所示,剪一个正方形纸片ABCD,取AD的中点E,F是BA的延长线上的一点,AF=12
AB.△ABE与△ADF全等吗?
自己解下吧
热心网友 时间:2023-10-25 05:29
1、现有4个全等的直角三角形纸板,你能用它们来拼证勾股定理吗?若能,说明你的思路和方法,方法越多越好(至少要写出四种方法).
2、将等边三角形分割成三个全等的图形,请画出三种不同的分割方法.
3、
阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.
求证:AB=CD.
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.
证明:方法一:作BF⊥DE于点F,CG⊥DE于点G.
∴∠F=∠CGE=90°.
又∵∠BEF=∠CEG,BE=CE,
∴△BFE≌△CGE.
∴BF=CG.
在△ABF和△DCG中,∵∠F=∠DGC=90°,∠BAE=∠CDE,BF=CG,
∴△ABF≌△DCG.
∴AB=CD.
方法二:作CF∥AB,交DE的延长线于点F.
∴∠F=∠BAE.
又∵∠ABE=∠D,
∴∠F=∠D.
∴CF=CD.
∵∠F=∠BAE,∠AEB=∠FEC,BE=CE,
∴△ABE≌△FCE.
∴AB=CF.
∴AB=CD.
方法三:延长DE至点F,使EF=DE.
又∵BE=CE,∠BEF=∠CED,
∴△BEF≌△CED.
∴BF=CD,∠D=∠F.
又∵∠BAE=∠D,
∴∠BAE=∠F.
∴AB=BF.
∴AB=CD.
4、
如图所示,剪一个正方形纸片ABCD,取AD的中点E,F是BA的延长线上的一点,AF=12
AB.△ABE与△ADF全等吗?
自己解下吧